Neuroscience
-
Cognitive neuroscience research on working memory has been largely motivated by a standard model that arose from the melding of psychological theory with neuroscience data. Among the tenets of this standard model are that working memory functions arise from the operation of specialized systems that act as buffers for the storage and manipulation of information, and that frontal cortex (particularly prefrontal cortex) is a critical neural substrate for these specialized systems. ⋯ An alternative is proposed: Working memory functions arise through the coordinated recruitment, via attention, of brain systems that have evolved to accomplish sensory-, representation-, and action-related functions. Evidence from behavioral, neuropsychological, electrophysiological, and neuroimaging studies, from monkeys and humans, is considered, as is the question of how to interpret delay-period activity in the prefrontal cortex.
-
Three experiments study the impact of symmetry on a sequential block tapping immediate memory task in human subjects. Experiment 1 shows an advantage from vertical symmetry over non-symmetrical sequences, while finding no effect of horizontal or diagonal symmetry. ⋯ A third study examines the effects of a concurrent executive load, finding an overall impairment, that did not differ between symmetrical and asymmetric patterns, suggesting that the effect of symmetry reflects automatic rather than executive processes. Implications for the episodic buffer component of working memory are discussed.
-
It has been postulated that spatial working memory operates optimally within a limited range of dopamine transmission and D1 dopamine receptor signaling in prefrontal cortex. Insufficiency in prefrontal dopamine, as in aging, and excessive transmission, as in acute stress, lead to impairments in working memory that can be ameliorated by D1 receptor agonist and antagonist treatment, respectively. Iontophoretic investigations of dopamine's influence on the cellular mechanisms of working memory have revealed that moderate D1 blockade can enhance memory fields in primate prefrontal pyramidal neurons while strong blockade abolishes them. ⋯ Elucidating the orchestration of dopamine signaling in key nodes within prefrontal microcircuitry is therefore pivotal for understanding the influence of dopamine transmission on the dynamics of working memory. Here, we explore the hypothesis that the window of optimal dopamine signaling changes on a behavioral time-scale, dependent upon current cognitive demands and local neuronal activity as well as long-term alterations in signaling pathways and gene expression. If we look under the bell-shaped curve of prefrontal dopamine function, it is the relationship between neuromodulation and cognitive function that promises to bridge our knowledge between molecule and mind.
-
Comparative Study
Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system.
Deprivation of socio-sensory interactions during early life impairs brain function in adulthood. In previous investigations we showed that early isolation severely affects neuron development in several structures of the hippocampal region, including the entorhinal cortex. In the present study we investigated the effects of early isolation on signal processing along the entorhinal cortex-dentate-CA3-CA1 system, a major memory circuit of the hippocampal region. ⋯ While the entorhinal cortex was moderately impaired, the dentate-hippocampal system was more severely affected. The impairment in the signal transfer along the entorhinal cortex-dentate gyrus-CA3-CA1 system was heavier in males, confirming the larger susceptibility of this sex to early experience. This work provides evidence that malfunctioning of a major hippocampal network may underlie the learning deficits induced by impoverished surroundings during early life.
-
This study investigates contributions of peripheral kainate receptors to acute nociception and persistent inflammatory pain in rat. Immunohistochemical analysis of kainate receptor expression using antibodies recognizing glutamate receptor subunits 5, 6, and 7 demonstrates that 28% of unmyelinated axons in normal digital nerve are positively labeled. Following intraplantar injection of complete Freund's adjuvant, a significant increase in glutamate receptor subunits 5, 6, and 7-labeled axons occurs at 2 days (40%), but not 7 (31%) or 14 days (28%) post-complete Freund's adjuvant. ⋯ Exposure of normal and inflamed nociceptors to 0.3 mM kainate sensitizes fibers to re-application of kainate and heat. This sensitization is blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione or the glutamate receptor subunit 5 selective antagonist 3S,4aR,6S,8aR-6-[4-carboxy-phenyl] methyl-1,2,3,4,4a,5,6,7,8,8a-deca-hydroisoquinoline-3-carboxylic acid. The data indicate that peripheral kainate receptors not only play an important role in normal nociception but also contribute to mechanical sensitivity and heat sensitization accompanying inflammatory pain.