Neuroscience
-
Comparative Study
Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter.
The hypothalamus, especially the preoptic area, plays a crucial role in thermoregulation, and our previous studies showed that the periaqueductal gray matter is important for transmitting efferent signals to thermoregulatory effectors in rats. Neurons responsible for skin vasodilation are located in the lateral portion of the rostral periaqueductal gray matter, and neurons that mediate non-shivering thermogenesis are located in the ventrolateral part of the caudal periaqueductal gray matter. We investigated the distribution of neurons in the rat hypothalamus that are activated by exposure to neutral (26 degrees C), warm (33 degrees C), or cold (10 degrees C) ambient temperature and project to the rostral periaqueductal gray matter or caudal periaqueductal gray matter, by using the immunohistochemical analysis of Fos and a retrograde tracer, cholera toxin-b. ⋯ On the other hand, when cholera toxin-b was injected into the caudal periaqueductal gray matter, many double-labeled cells were seen in a cell group extending from the dorsomedial nucleus through the dorsal hypothalamic area in cold-exposed rats but few were seen in warm-exposed rats. These results suggest that the rostral periaqueductal gray matter receives input from the median preoptic nucleus neurons activated by warm exposure, and the caudal periaqueductal gray matter receives input from neurons in the dorsomedial nucleus/dorsal hypothalamic area region activated by cold exposure. These efferent pathways provide a substrate for thermoregulatory skin vasomotor response and non-shivering thermogenesis, respectively.
-
The central nucleus of the amygdala (CeA) plays an important role both in stimulus-reward learning for the reinforcing effects of drugs of abuse and in environmental condition-induced analgesia. Both of these two CeA functions involve the opioid system within the CeA. However, the pharmacological profiles of its opioid receptor system have not been fully studied and the synaptic actions of opioid receptors in the CeA are largely unknown. ⋯ Furthermore, the mu-opioid inhibition of the EPSC was blocked by 4-aminopyridine (4AP; 100 microM), a voltage-dependent potassium channel blocker, and by phospholipase A(2) inhibitors AACOCF(3) (10 microM) and quinacrine (10 microM). These results indicate that only the mu-opioid receptor is functionally present on presynaptic glutamatergic terminals in normal CeA neurons, and its activation reduces the probability of glutamate release through a signaling pathway involving phospholipase A(2) and the presynaptic, 4AP-sensitive potassium channel. This study provides evidence for the presynaptic regulation of glutamate synaptic transmission by mu-opioid receptors in CeA neurons.
-
Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. ⋯ Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the downstream pathways activated by intracellular calcium overload.
-
Comparative Study
Comparative expression profiles of ShcB and ShcC phosphotyrosine adapter molecules in the adult brain.
Shc family of adaptor molecules has been demonstrated to play an important role during the transition from proliferating neural stem cells to postmitotic neurons. Previous studies from our group demonstrated a progressive decrease of ShcA levels occurring in coincidence with the end of embryonic neurogenesis and neuronal maturation, being ShcB and ShcC the major Shc molecules expressed in the mature brain. ⋯ Here, we examine the expression pattern of ShcB and ShcC in neuronal populations composing the adult central and peripheral nervous system, in order to better elucidate their roles in vivo. We found a heterogeneous and peculiar presence and subcellular localization of ShcB and ShcC in specific neuronal populations, enlightening a potential specific requirement of these two molecules in the survival/maintenance of defined neuronal subtypes.
-
Most drugs of abuse increase dopamine (DA) in the nucleus accumbens (NAc), and do so every time as a pharmacological response. Palatable food also releases accumbens-shell DA, but in naïve rats the effect can wane during a long meal and disappears with repetition. Under select dietary circumstances, sugar can have effects similar to a drug of abuse. ⋯ In the Daily Intermittent Sucrose group, the highest ACh levels (133%) occurred during the first sample after the sucrose meal ended. In summary, sucrose-dependent animals have a delayed ACh satiation response, drink more sucrose, and release more DA than sucrose- or binge-experienced, but non-dependent animals. These results suggest another neurochemical similarity between intermittent bingeing on sucrose and drugs of abuse: both can repeatedly increase extracellular DA in the NAc shell.