Neuroscience
-
Globular bushy cells are a key element of brainstem circuits that mediate the early stages of sound localization. Many of their physiological properties have been attributed to convergence of inputs from the auditory nerve, many of which are large with complex geometry, but the number of these terminals contacting individual cells has not been measured directly. Herein we report, using cats as the experimental model, that this number ranged greatly (9-69) across a population of 12 cells, but over one-half of the cells (seven of 12) received between 15 and 23 inputs. ⋯ This predictive model reveals that basic physiological features, such as precise first spike latencies and peristimulus time histogram shapes, including primary-like with notch and onset-L, can be generated in these cells without including inhibitory inputs. However, phase-locking is not significantly enhanced over auditory-nerve fibers. These combined anatomical and computational approaches reveal additional parameters, such as active zone density, nerve terminal size, numbers and sources of inhibitory inputs and their activity patterns, that must be determined and incorporated into next-generation models to understand the physiology of globular bushy cells.
-
The affective and the sensory dimensions of pain processing can be differentiated in humans through the use of questionnaires and verbal communication. It is difficult to dissociate these two components of pain processing in rodents, and an understanding of the underlying mechanisms for each component is unclear. The quantification of a novel behavioral response to a repeated noxious cutaneous stimulus together with a measurement of tactile allodynia in nerve-injured rats might be used to differentially explore the sensory and affective components of pain processing in the rat. ⋯ These findings provide the first quantified report that the activation of the anterior cingulate cortex reduced the aversive quality of repeated noxious tactile stimulation in nerve-injured animals without interfering with normal sensory processing. This effect might require the presence of an intact ventrolateral periaqueductal gray area. It is concluded that the selective manipulation of the anterior cingulate cortex has different effects on pain affect and sensory processing in a rodent model of neuropathic pain.
-
Our previous studies have shown that intracerebral administration of endotoxin, lipopolysaccharide (LPS), induces selective white matter injury and hypomyelination in the neonatal rat brain and that the LPS-induced brain injury is associated with activation of microglia. To test the hypothesis that inhibition of microglial activation may protect against LPS-induced white matter injury, we examined roles of minocycline, a putative suppressor of microglial activation, on LPS-induced brain injury in the neonatal rat. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in postnatal day 5 Sprague-Dawley rats and control rats were injected with sterile saline. ⋯ The protective effect of minocycline was associated with suppressed microglial activation as indicated by the decreased number of activated microglial cells following LPS stimulation and with consequently decreased elevation of interleukin 1beta and tumor necrosis factor-alpha concentrations induced by LPS and a reduced number of inducible nitric oxide synthase expressing cells. Protection of minocycline was also linked with the reduction in LPS-induced oxidative stress, as indicated by 4-hydroxynonenal positive OLs. The overall results suggest that reduction in microglial activation may protect the neonatal brain from LPS-induced white matter injury and inhibition of microglial activation might be an effective approach for the therapeutic treatment of infection-induced white matter injury.
-
Comparative Study
Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.
Both N- and P/Q-type voltage-dependent calcium channels are involved in fast transmitter release in the hippocampus, but are differentially regulated. Although variable contributions of voltage-dependent calcium channel subtypes to presynaptic Ca2+ influx have been suggested to give a neural network of great diversity, their presence has only been demonstrated in a culture system and has remained unclear in the brain. Here, the individual large mossy fiber presynaptic terminal was labeled with Ca2+/Sr2+-sensitive fluorescent dextrans in the hippocampal slice of the mouse. ⋯ On the other hand, these terminals were similar in the fractional contributions of P/Q-type voltage-dependent calcium channels. These results provide direct evidence that individual large mossy fiber synapses are differential in the contribution of N- and R-type voltage-dependent calcium channel subtypes to presynaptic Ca2+/Sr2+ influx. We suggest that the synapse-to-synapse variation of presynaptic voltage-dependent calcium channel subtype contributions may be one of the mechanisms amplifying diversity of the hippocampal network.
-
Current evidence suggests that behavioral sensitization to the chronic administration of levodopa (L-DOPA) to dopamine-depleted animals involves a plasticity of GABA-mediated signaling in output regions of the basal ganglia. The purpose of this study was to compare in adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion the effects of an acute or chronic (for 3 or 7 days) injection of L-DOPA on mRNA levels encoding for glutamic acid decarboxylase (GAD65 and GAD67) in the striatum and GABA(A) receptor alpha1, beta2 and gamma2 subunits in the substantia nigra, pars reticulata (SNr), by in situ hybridization histochemistry. In addition, immunostaining levels for the alpha1 subunit were examined in the SNr. ⋯ In addition, alpha1 immunostaining in the SNr was significantly decreased in rats injected for 7 days but not for 3 days or acutely with L-DOPA. Our results demonstrate that a chronic administration of L-DOPA results in a progressive increase in GAD and decrease in GABA(A) receptor expression in the striatum and SNr, respectively. They provide further evidence that behavioral sensitization and dyskinesia induced by a chronic administration of L-DOPA in an experimental model of Parkinson's disease is paralleled by a plasticity of GABA-mediated signaling in the SNr.