Neuroscience
-
Comparative Study
Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas.
The distribution of GABAergic callosally projecting neurons was analysed in the somatic sensory areas of cat and rat cerebral cortex by combining retrograde tracing of nerve cell bodies and glutamic acid decarboxylase (GAD) immunocytochemistry. A retrograde tracer (colloidal gold- labelled wheat germ agglutinin conjugated to enzymatically inactive horseradish peroxidase) was injected in the first or second somatic sensory area. ⋯ Their proportion was similar in both species (0.8% of all retrogradely-labelled neurons in cat, 0.7% in rat). These results: 1) confirm the existence of a small proportion of GABAergic callosally projecting neurons in rat somatic sensory cortices; 2) indicate the presence of a small but significant proportion of GAD-positive callosally projecting neurons in cat somatic sensory cortices; and 3) show that the proportion of GAD-positive callosal neurons is similar in the two species.
-
Comparative Study
Differential effects of testosterone on protein synthesis activity in male and female quail brain.
In Japanese quail, testosterone (T) increases the Nissl staining density in the medial preoptic nucleus (POM) in relation to the differential activation by T of copulatory behavior. The effect of T on protein synthesis was quantified here in 97 discrete brain regions by the in vivo autoradiographic (14)C-leucine (Leu) incorporation method in adult gonadectomized male and female quail that had been treated for 4 weeks with T or left without hormone. T activated male sexual behaviors in males but not females. ⋯ The POM boundaries were defined by a denser Leu incorporation than the surrounding area and incorporation was increased by T more in males (25%) than in females (6%). These results confirm that protein synthesis in brain areas relevant to the control of sexual behavior can be affected by the sex of the subjects or their endocrine condition and that T can have differential effects in the two sexes. These anabolic changes should reflect the sexually differentiated neurochemical mechanisms mediating behavioral activation.
-
Comparative Study
Carbachol in the pontine reticular formation of C57BL/6J mouse decreases acetylcholine release in prefrontal cortex.
The prefrontal cortex and brainstem modulate autonomic and arousal state control but the neurotransmitter mechanisms underlying communication between prefrontal cortex and brainstem remain poorly understood. This study examined the hypothesis that microdialysis delivery of carbachol to the pontine reticular formation (PRF) of anesthetized C57BL/6J (B6) mouse modulates acetylcholine (ACh) release in the frontal association cortex. Microdialysis delivery of carbachol (8.8 mM) to the PRF caused a significant (P<0.01) decrease (-28%) in ACh release in the frontal association cortex, a significant (P<0.01) decrease (-23%) in respiratory rate, and a significant (P<0.01) increase (223%) in time to righting after anesthesia. ⋯ In vitro treatment with carbachol (1 mM) caused a significant (P<0.01) increase in [(35)S]GTPgammaS binding in the frontal association cortex (62%) and basal forebrain nuclei including medial septum (227%), vertical (210%) and horizontal (165%) limbs of the diagonal band of Broca, and substantia innominata (127%). G protein activation by carbachol was concentration-dependent and blocked by atropine, indicating that the carbachol-stimulated [(35)S]GTPgammaS binding was mediated by muscarinic cholinergic receptors. Together, the in vitro and in vivo data show for the first time in B6 mouse that cholinergic neurotransmission in the PRF can significantly alter ACh release in frontal association cortex, arousal from anesthesia, and respiratory rate.
-
Excitotoxic oligodendroglial death is one of the mechanisms which has been proposed to underlie demyelinating diseases of the CNS. We describe here functional consequences of excitotoxic lesions to the rabbit optic nerve by studying the visual evoked potentials (VEPs) measured in the visual cortex. Nerves were slowly infused with the excitotoxin kainate a subcutaneously implanted osmotic pump which delivered the toxin through a cannula onto the optic nerve. ⋯ These observations were confirmed and extended by immunohistochemical analyses using markers to neurofilaments, myelin basic protein and the oligodendrocyte marker APC. The results of the present paper indicate that the consequences of excitotoxicity in the optic nerve share functional and morphological alterations which are found in demyelinating disorders. In addition, this experimental paradigm may be useful to evaluate the functional recovery of demyelinated optic nerves following various repair strategies.
-
Comparative Study
Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors.
Huntington's disease (HD) is a late onset progressive genetic disorder characterised by motor dysfunction, personality changes, dementia and premature death. The disease is caused by an unstable expanded trinucleotide (CAG) repeat encoding a polyglutamine stretch in the IT15 gene for huntingtin, a protein of unknown function. Transgenic mice expressing exon one of the human HD gene with an expanded polyglutamine region develop many features of human HD. ⋯ In the brains of humans diagnosed with HD cannabinoid CB1 receptors are selectively lost from the basal ganglia output nuclei prior to the development of other identifiable neuropathology [Neuroscience 97 (2000) 505]. Our results therefore show that an enhanced environment slows the rate of loss of one of the first identifiable neurochemical deficits of HD. This suggests that delaying the loss of CB1 receptors, either by environmental stimulation or pharmacologically, may be beneficial in delaying disease progression in HD patients.