Neuroscience
-
Absence epilepsy is characterised by a paroxysmal loss of consciousness, of abrupt onset and termination, and is associated with a bilateral synchronous spike and wave discharge (SWD) on the electroencephalogram. Absence seizures involve an interplay between thalamic and cortical structures, although most research has so far focussed on sensory thalamic nuclei and the reticular thalamic nucleus (RTN). Thus, microinfusion of ethosuximide (ETX), a first choice anti-absence drug, into either the ventrobasal thalamus or RTN of the genetic absence epilepsy rat from Strasbourg (GAERS), a validated rat model of absence epilepsy, does not produce immediate cessation of seizure activity, as is seen following systemic administration. ⋯ No reduction of SWD was seen when ETX was infused into M1. Microinfusion of CGP 36742 (5 nmol/side), a GABA(B) antagonist, produced immediate cessation of seizure activity in both S1po and M1 and a delayed effect in S1FL. These data suggest that the ability of ETX to abolish genetically determined absence seizures is cortical-area specific and support the involvement of S1po in the initiation of SWDs.
-
The medial preoptic area (MPOA) is important for reproductive behavior in females. However, the descending pathways mediating these responses to the spinal motor output are unknown. The MPOA does not directly innervate the spinal cord. ⋯ Injection of biotinylated dextran amine into the MPOA produced dense labeling in specific regions of the PAG and Barrington's nucleus; anterogradely labeled fibers terminated close to neurons retrogradely labeled from the spinal cord in the PAG, Barrington's nucleus, nPGi, lateral hypothalamus and paraventricular nucleus (PVN). Anterogradely labeled fibers and varicosities were also found close to neurons retrogradely labeled from the nPGi in the PAG, lateral hypothalamus and PVN. These results suggest that the major MPOA output relays in the PAG and nPGi before descending to innervate spinal circuits regulating female genital reflexes and that the MPOA plays a multifaceted role in female reproductive behavior through its modulation of PAG output systems.
-
The effect of treatment with a broad-spectrum inhibitor (BB1101) of the matrix metalloproteinases (MMPs) on nerve regeneration and functional recovery after nerve crush was examined. Drug treatment had no effect on latency but from 63 days the compound muscle action potential was significantly increased and was no different to that in the sham-operated controls at 72 days. Levels of MMP mRNA expression, and the localisation and activity of MMP proteins, were examined in rats for a 2 month period following a nerve crush injury, and compared with sham-operated controls. ⋯ Regenerating axons showed immunoreactivity for MMP-2 and MMP-3. In situ zymography confirmed that the activity of MMPs in the nerve was increased following crush but that the activity was greatly reduced in rats treated with BB-1101. Thus despite the inhibition of MMPs by BB-1101, the drug did not appear to essentially affect nerve degeneration or regeneration following nerve crush but that it could be beneficial in promoting the more effective reinnervation of muscles possibly by actions at the level of the muscles.
-
Comparative Study
The ventral hippocampal regulation of prepulse inhibition and its disruption by apomorphine in rats are not mediated via the fornix.
Prepulse inhibition (PPI) of startle is a measure of sensorimotor gating that is impaired in schizophrenia. We have reported that PPI is regulated by the ventral hippocampus (VH) and that the PPI disruptive effects of the dopamine agonist apomorphine are enhanced 4 weeks after excitotoxic lesions of the VH. The mechanisms responsible for the VH influence on PPI are not understood, but have been ascribed to interactions between the VH and nucleus accumbens. ⋯ The PPI-disruptive effects of apomorphine were significantly enhanced by excitotoxic or electrolytic lesions of the VH, but not by fornix transection. The influence of the VH on PPI and its dopaminergic regulation does not appear to be mediated via the fornix. The enhanced sensitivity to the PPI-disruptive effects of apomorphine after VH lesions is not dependent on excitotoxin-induced changes in the VH or its downstream projections.
-
We investigated the CNS delivery of insulin-like growth factor-I (IGF-I), a 7.65 kDa protein neurotrophic factor, following intranasal administration and the possible pathways and mechanisms underlying transport from the nasal passages to the CNS. Anesthetized adult male Sprague-Dawley rats were given [125I]-IGF-I intranasally or intravenously and then killed by perfusion-fixation within 30 min. Other animals were killed following cisternal puncture and withdrawal of cerebrospinal fluid (CSF) or intranasal administration of unlabeled IGF-I or vehicle. ⋯ Intravenous [125I]-IGF-I resulted in blood and peripheral tissue exposure similar to that seen following intranasal administration but CNS concentrations were significantly lower. Finally, delivery of IGF-I into the CNS activated IGF-I signaling pathways, confirming some portion of the IGF-I that reached CNS target sites was functionally intact. The results suggest intranasally delivered IGF-I can bypass the blood-brain barrier via olfactory- and trigeminal-associated extracellular pathways to rapidly elicit biological effects at multiple sites within the brain and spinal cord.