Neuroscience
-
Small-diameter sensory neurons are key contributors in joint pain and have been implicated in the pathogenesis of rheumatoid arthritis (RA). Small-diameter sensory neurons can be separated into at least two distinct populations, which include isolectin B4 (IB4)-binding and tyrosine receptor kinase (trk) A-expressing. While trkA-expressing neurons have been identified in the rat knee joint there are no data, we are aware of, to suggest that IB4-binding neurons are also present. ⋯ Injection of FG into skin over the medial aspect of the rat knee (n=3) showed 48% of these cutaneous afferents in L3 and L4 DRG were double-labeled with FG and FITC. A complete absence of IB4-binding neurons in the rat knee joint makes it unlikely that this predominantly cutaneous, IB4-binding population of afferent neurons could have any significant influence in chronic inflammatory joint disease. This suggests that trkA-expressing neurons are the sole population of small-diameter sensory neurons in the knee joint and implies a significant role for these afferents in the progression of RA.
-
The cortical regions surrounding the suprasylvian sulcus have previously been associated with motion processing. Of the six areas originally described by Palmer et al. [J Comp Neurol 177 (1978) 237], the posteromedial lateral suprasylvian (PMLS) cortex has attracted the greatest attention. Very little physiological information is available concerning other suprasylvian visual areas, and in particular, the anteromedial lateral suprasylvian cortex (AMLS). ⋯ Finally, 45% of 20 neurons were direction selective to a radial optic flow stimulus. Overall, these results suggest that AMLS cortex is involved in higher-order analyses of visual motion. It is possible that the AMLS cortex represents a region between PMLS and the anterior ectosylvian visual area in a functional hierarchy of areas involved in motion integration.
-
Comparative Study
Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure.
The chronic administration of morphine and related opioid drugs results in tolerance and dependence which limits the clinical utility of these agents. Neuronal plasticity is probably responsible in large part for tolerance and dependence. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a crucial role in the neuroplastic events underlying memory formation and other phenomena. ⋯ In addition, the abundance of phosphorylated CaMKIIalpha was increased in spinal cord tissue from morphine-treated mice. We conclude that enhanced CaMKIIalpha expression and activity in spinal cord tissue may contribute to the development of morphine tolerance in mice. The involvement of this enzyme in opioid tolerance suggests other parallels may exist between the neuroplastic events related to memory formation and those related to opioid tolerance or pain.
-
Although gender differences in the response to stress have been reported, differences in stress-induced changes in feeding behavior have not been well studied. In this report, inhibition of food intake was compared in male and female rats following 1 h of restraint, electric footshock, or emotional stress induced by a communication box. Although the three stressors inhibited food intake in both genders, only emotional stress caused a gender difference, a greater inhibition of food intake in female rats (48%) than in male rats (22%). ⋯ Ovariectomy reduced the inhibition of food intake by emotional stress to the same level as that in male, and replacement with estradiol restored the inhibition to the level of the normal female rats. A corticotropin-releasing factor (CRF) type 1 receptor antagonist prevented emotional stress-induced inhibition of food intake, indicating the involvement of CRF type 1 receptor in emotional stress-induced inhibition of food intake. These results suggest that female rats show a greater inhibition of food intake in response to emotional stress than male rats and that estrogen plays a role in the gender difference.
-
We have previously shown that voluntary exercise produces enhanced neurogenesis and long-term potentiation (LTP) in the dentate gyrus (DG) of mice in vitro. In the present experiments we show that rats given access to a running wheel (Runners) exhibit significantly more short-term potentiation and LTP with theta-patterned conditioning stimulation in vivo than do age-matched litter mates (Controls). This increase in LTP appears to reflect an alteration in the induction threshold for synaptic plasticity that accompanies voluntary exercise. ⋯ Consistent with these findings, we found that mRNA levels for NR2B subtype of NMDA receptor were increased specifically in the DG of Runners. In addition to changes in NR2B mRNA levels, quantitative polymerase chain reaction analysis revealed that brain-derived neurotrophic factor (BDNF) and glutamate receptor 5 mRNA levels were also significantly elevated in the DG of Runners, but not in other areas of the hippocampus. Thus, alterations in the expression of BDNF, and specific glutamate receptor subtypes, may underlie the ability of exercise to enhance neurogenesis and reduce the threshold for LTP in the DG.