Neuroscience
-
Aquaporin-4 (AQP4) is the major water channel in the CNS. Its expression at fluid-tissue barriers (blood-brain and brain-cerebrospinal fluid barriers) throughout the brain and spinal cord suggests a role in water transport under normal and pathological conditions. Phenotype studies of transgenic mice lacking AQP4 have provided evidence for a role of AQP4 in cerebral water balance and neural signal transduction. ⋯ In contrast, brain swelling and clinical outcome are worse in AQP4-null mice in models of vasogenic (fluid leak) edema caused by freeze-injury and brain tumor, probably due to impaired AQP4-dependent brain water clearance. AQP4-null mice also have markedly reduced acoustic brainstem response potentials and significantly increased seizure threshold in response to chemical convulsants, implicating AQP4 in modulation of neural signal transduction. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the CNS associated with altered brain water balance.
-
Potassium-chloride cotransporters (KCCs) collectively play a crucial role in the function and development of both the peripheral and central nervous systems. KCC4 is perhaps the least abundant KCC in the adult mammalian brain, where its localization is unknown. In the embryonic brain, KCC4 mRNA is found in the periventricular zone, cranial nerves and choroid plexus [Eur J Neurosci 16 (2002) 2358]. ⋯ Co-staining of KCC4 with anti-MAP2, GFAP and CNPase revealed that KCC4 is expressed in peripheral neurons. Thus, KCC4 is expressed on the apical membrane of the choroid plexus, where it likely participates to K(+) reabsorption. KCC4 is also expressed in peripheral neurons, where its function remains to be determined.
-
Prostaglandin E2 (PGE2) produced in the medial preoptic region (MPO) in response to immune signals is generally accepted to play a major role in triggering the illness response, a complex of physiological and behavioral changes induced by infection or injury. Hyperalgesia is now thought to be an important component of the illness response, yet the specific mechanisms through which the MPO acts to facilitate nociception have not been established. However, the MPO does project to the rostral ventromedial medulla (RVM), a region with a well-documented role in pain modulation, both directly and indirectly via the periaqueductal gray. ⋯ In animals displaying behavioral hyperalgesia, the PGE2 microinjection activated on-cells, RVM neurons thought to facilitate nociception, and suppressed the firing of off-cells, RVM neurons believed to have an inhibitory effect on nociception. A large body of evidence has implicated prostaglandins in the MPO in generation of the illness response, especially fever. The present study indicates that the MPO also contributes to the hyperalgesic component of the illness response, most likely by recruiting the nociceptive modulating circuitry of the RVM.
-
Aquaporin-4 (AQP4) is the predominant water channel in the neuropil of the central nervous system. It is expressed primarily in astrocytes, but also occurs in ependymocytes and endothelial cells. A striking feature of AQP4 expression is its polarized distribution in brain astrocytes and retinal Muller cells. ⋯ We propose that AQP4 works in concert with Kir4.1 and the electrogenic bicarbonate transporter NBC and that water flux through AQP4 contributes to the activity dependent volume changes of the extracellular space. Such volume changes are important as they affect the extracellular solute concentrations and electrical fields, and hence neuronal excitability. We conclude that AQP4-mediated water flux represents an integral element of brain volume and ion homeostasis.
-
Comparative Study
Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice.
The pharmacological profile of allopregnanolone, a neuroactive steroid that is a potent positive modulator of gamma-aminobutyric acidA (GABAA) receptors, is similar to that of ethanol. Recent findings indicate that acute injection of ethanol increased endogenous allopregnanolone to pharmacologically relevant concentrations in male rats. However, there are no comparable data in mice, nor has the effect of ethanol drinking on endogenous allopregnanolone levels been investigated. ⋯ The sex differences in the effect of ethanol administration on endogenous allopregnanolone levels suggest that the hormonal milieu may impact ethanol's effect on GABAergic neurosteroids. Importantly, these data are the first to report the effect of ethanol drinking on allopregnanolone levels and indicate that ethanol consumption and ethanol injection can produce physiologically relevant allopregnanolone levels in male mice. These results have important implications for studies investigating the potential role of endogenous allopregnanolone levels in modulating susceptibility to ethanol abuse.