Neuroscience
-
The expression of purinoceptor (P2)Y-subtypes on astrocytes in vivo under physiological conditions and after stab wound injury was investigated. Reverse transcriptase-polymerase chain reaction with specific primers for the receptor-subtypes P2Y1,2,4,6,12 in tissue extracts of the nucleus accumbens of untreated rats revealed the presence of all P2Y receptor mRNAs investigated. Double immunofluorescence visualized with laser scanning microscopy indicated the expression of the P2Y1,4 receptors on glial fibrillary acidic protein (GFAP)-labeled astrocytes under physiological conditions. ⋯ The non-selective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, the P2Y1 receptor antagonist N6-methyl-2'-deoxyadenosine 3',5'-bisphosphate and the P2Y1 receptor-antibody itself inhibited the agonist-induced effects. The data indicate the region-specific presence of P2Y receptors on astrocytes in vivo and their up-regulation after injury as well as the co-localization of P2X and P2Y receptor-subtypes on the same astrocyte. The dominant role of P2Y1 receptors in proliferation and the additional stimulation of non-P2Y1 receptors has been demonstrated in vivo suggesting the involvement of this receptor-type in the gliotic response under physiological and pathological conditions.
-
Comparative Study
Early stages of memory formation in filial imprinting: Fos-like immunoreactivity and behavior in the domestic chick.
Early stages of memory formation in filial imprinting were studied in domestic chicks. Chicks trained for 15 min showed strong imprinting, demonstrated by a strong preference for their training stimulus, and the time course of this preference over 2 days after training was similar to that of chicks trained for 60 min. The chicks therefore learned characteristics of the training stimulus very early during training. ⋯ The time course of expression was stimulus-dependent. Fos expression in the IMHV, but not the hippocampus, was significantly correlated with strength of imprinting. It is concluded that the learning-specific change in Fos expression in the IMHV is associated with very early components of memory formation.
-
Comparative Study
Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats.
The activation of spinal cord N-methyl-D-aspartate (NMDA) receptors and subsequent intracellular cascades play a pivotal role in the development of opioid tolerance. Postsynaptic density protein-95 (PSD-95), a molecular scaffolding protein, assembles a specific set of signaling proteins around NMDA receptors at neuronal synapses. The current study investigated the possible involvement of PSD-95 in the development of opioid tolerance. ⋯ The PSD-95 antisense oligodeoxynucleotide at the doses we used did not affect baseline response to noxious thermal stimulation or locomotor function. The present study indicates that the deficiency of spinal cord PSD-95 attenuates the development of opioid tolerance. These results suggest that PSD-95 might be involved in the central mechanisms of opioid tolerance and provide a possible new target for prevention of development of opioid tolerance.
-
Comparative Study
Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system.
Hyperpolarisation-activated non-specific cation currents (Ih currents) are important for the regulation of cell excitability. These currents are carried by channels of the hyperpolarisation-activated nucleotide-gated (HCN) family, of which there are four known subtypes. In the enteric nervous system (ENS), the Ih current is prominent in AH neurons. ⋯ There was no correlation between the magnitude of the Ih and intensity of channel immunoreactivity. Our results indicate that HCN1, 2 and 4 genes and protein are expressed in the ENS. AH/Dogiel type II neurons, which have a prominent Ih, express HCN2 and 4 in guinea-pig and HCN1 and 2 in mouse and rat.
-
Comparative Study
Pre- and post-synaptic effects of manipulating surface charge with divalent cations at the photoreceptor synapse.
Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. ⋯ Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors.