Neuroscience
-
To determine the sensitivity of basal forebrain cholinergic neurons to ionotropic glutamate receptor activation, acetylcholine was collected from the cerebral cortex of urethane-anesthetized rats using microdialysis while monitoring cortical electroencephalographic (EEG) activity. alpha-Amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA; 1, 10, or 100 microM), N-methyl-D-aspartate (NMDA; 100 or 1000 microM) or a combination of AMPA (10 microM) and NMDA (100 microM) was administered to the basal forebrain using reverse microdialysis. Both glutamate receptor agonists produced concentration-dependent, several-fold increases in acetylcholine release indicating that they activated basal forebrain cholinergic neurons; AMPA was more potent, increasing acetylcholine release at a lower concentration than NMDA. The combination of AMPA and NMDA did not produce any greater release than each drug alone, indicating that the effects of these two drugs on cholinergic neurons are not additive. ⋯ The highest concentrations of AMPA and NMDA tested produced small (25%) but significant increases in high frequency activity. There was a positive correlation across animals between the increases in power in the beta (14-30 Hz) and gamma (30-58 Hz) ranges and increases in acetylcholine release. These results indicate that glutamate can activate cholinergic basal forebrain neurons via both AMPA and NMDA ionotropic receptors but has a more modest effect on EEG activation.
-
Interaction between basal ganglia and cerebral cortex is critical for normal goal-directed behavior. In the present study we have used the immediate early gene zif/268, as functional marker to investigate how the stimulation of adenosine A2A receptors, i.e. of the "indirect" striatal output pathway, affects striatal and cortical function in "weaver" mouse, a genetic model of dopamine deficiency. Furthermore, we have examined the effect of A2A receptor stimulation on glutamate receptor expression in the "weaver" brain. ⋯ Furthermore, the up-regulation of epsilon2 subunit mRNA of the NMDA receptor, induced by CGS21680 administration, seen in striatum and cortex of the "weaver" mouse, would lead to overactivity of these receptors worsening dyskinesias. These results suggest adenosine to play a significant role in regulating striatal and cortical neurochemistry in a dopamine-depleted mouse. Blockade of these receptors by specific A2A antagonists could ameliorate parkinsonian symptoms.
-
A diet high in total fat (HF) reduces hippocampal levels of brain-derived neurotrophic factor (BDNF), a crucial modulator of synaptic plasticity, and a predictor of learning efficacy. We have evaluated the capacity of voluntary exercise to interact with the effects of diet at the molecular level. Animal groups were exposed to the HF diet for 2 months with and without access to voluntary wheel running. ⋯ Results indicate that exercise interacts with the same molecular systems disrupted by the HF diet, reversing their effects on neural function. Reactive oxygen species, and BDNF in conjunction with its downstream effectors on synaptic and neuronal plasticity, are common molecular targets for the action of the diet and exercise. Results unveil a possible molecular mechanism by which lifestyle factors can interact at a molecular level, and provide information for potential therapeutic applications to decrease the risk imposed by certain lifestyles.
-
Comparative Study
Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.
Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. ⋯ In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.
-
To help discern sites of focal activation during seizures of different phenotype, the numbers of Fos immunoreactive (FI) neurons in specific brain regions were analyzed following "brainstem-evoked," "forebrain-evoked" and forebrain/brainstem combination seizures induced by a variety of methods. First, pentylenetetrazol (PTZ, 50 mg/kg) induced forebrain-type seizures in some rats, or forebrain seizures that progressed to tonic/clonic brainstem-type seizures in other rats. Second, minimal electroshock induced forebrain seizures whereas maximal electroshock (MES) induced tonic brainstem-type seizures in rats. ⋯ These findings suggest these latter areas may be transitional areas between forebrain and brainstem seizure interactions. Collectively, these data illustrate a generally consistent pattern of forebrain Fos staining associated with forebrain-type seizures and a consistent pattern of brainstem Fos staining associated with brainstem-type seizures. Additionally, these data are consistent with a notion that separate seizure circuitries in the forebrain and brainstem mutually interact to facilitate one another, possibly through involvement of specific "transition mediating" nuclei.