Neuroscience
-
Environmental thermal stimuli result in specific and coordinated thermoregulatory response in homeothermic animals. Warm exposure activates numerous brain areas within the cortex, hypothalamus, pons and medulla oblongata. We identified these thermosensitive cell groups in the medulla and pons that were suggested but not outlined by previous physiological studies. ⋯ Among several brain regions, warm exposure elicited c-fos expression specifically in the ventrolateral part of the medial preoptic area, the central subdivision of the lateral parabrachial nucleus and the caudal part of the peritrigeminal nucleus, whereas cold stress resulted in c-fos expression in the ventromedial part of the medial preoptic area, the external subdivision of the lateral parabrachial nucleus and the rostral part of the peritrigeminal nucleus. These neurons are part of a network coordinating specific response to warm or cold exposure. The topographical differences suggest that well-defined cell groups and subdivisions of nuclei are responsible for the specific physiological (endocrine, autonomic and behavioral) changes observed in different thermal environment.
-
Activity-regulated, cytoskeletal-associated protein (Arc) is an immediate early gene induced in excitatory circuits following behavioral episodes. Arc mRNA is targeted to activated regions of the dendrite after long-term potentiation (LTP) of the dentate gyrus, a process dependent on NMDA receptor activation. We used post-embedding immunogold electron microscopy (EM) to test whether synaptic Arc expression patterns are selectively modified by plasticity. ⋯ Post-embedding EM revealed Arc immunogold labeling in three times as many spines in the middle molecular layer of the stimulated dentate gyrus than in either the ipsilateral outer molecular layer or the contralateral middle and outer molecular layers. This upregulation did not occur with low frequency stimulation of the perforant path. Therefore Arc protein localization may be a powerful tool to isolate recently activated dendritic spines.
-
Gap junctions between glial cells in mammalian CNS are known to contain several connexins (Cx), including Cx26, Cx30 and Cx43 at astrocyte-to-astrocyte junctions, and Cx29 and Cx32 on the oligodendrocyte side of astrocyte-to-oligodendrocyte junctions. Recent reports indicating that oligodendrocytes also express Cx47 prompted the present studies of Cx47 localization and relationships to other glial connexins in mouse CNS. In view of the increasing number of connexins reported to interact directly with the scaffolding protein zonula occludens-1 (ZO-1), we investigated ZO-1 expression and Cx47/ZO-1 interaction capabilities in brain, spinal cord and Cx47-transfected HeLa cells. ⋯ ZO-1 was found to co-immunoprecipitate with Cx47, and pull-down assays indicated binding of Cx47 to the second PDZ domain of ZO-1. Our results indicate widespread expression of Cx47 by oligodendrocytes, but with a distribution pattern in relative levels inverse to the abundance of Cx29 in myelin and paucity of Cx29 in oligodendrocyte somata. Further, our findings suggest a scaffolding and/or regulatory role of ZO-1 at the oligodendrocyte side of astrocyte-to-oligodendrocyte gap junctions.
-
A selective GABA(B) receptor agonist, baclofen, is known to suppress neuropathic pain. In the present study, we investigated the effect of baclofen on the excitability of trigeminal root ganglion (TRG) neurons by using the whole cell and perforated patch-clamp recording techniques. Under voltage-clamp (V(h)=-60 mV), voltage-dependent K(+) currents were recorded in the small diameter TRG neurons (<30 microm) and isolated by blocking Na(+) and Ca(2+) currents with appropriate ion replacement. ⋯ Application of baclofen reduced action potential duration evoked by a depolarization current pulse. These results indicated that activation of GABA(B) receptors inhibits the excitability of rat small diameter TRG neurons and this inhibitory action is mediated by potentiation of voltage-dependent K(+) currents. We therefore concluded that modification of nociceptive transmission in the trigeminal system by activation of GABA(B) receptors occurs at the level of small TRG neuron cell bodies and/or their primary afferent terminals, which are potential targets of analgesia by baclofen.
-
Comparative Study
Cocaine- and amphetamine-regulated transcript peptide (CART) is a selective marker of rat granule cells and of human mossy cells in the hippocampal dentate gyrus.
Cocaine- and amphetamine-regulated transcript (CART) peptide immunocytochemistry was used to reveal cellular localization in the dentate gyrus and in Ammon's horn of the rat and human hippocampal formations. In the rat dentate gyrus, only granule cells were labeled, whereas in humans, only mossy cells of the hilar region expressed CART peptide immunoreactivity. In the rat, CART-positive granule cells were located at the molecular layer border of the granule cell layer and had no features that would distinguish them from other granule cells. ⋯ The specific location of CART peptide in the dentate granule cells of rodents and in the mossy cells of the human hippocampus may indicate involvement of neuronal circuitry of the dentate gyrus in the memory-related effects of cocaine and amphetamine. Independently of its functional role, CART peptide can be used as a specific marker of human mossy cells and of the dentate associational pathway. The sensitivity of CART peptide to postmortem autolysis may restrict the use of this marker in surgically removed hippocampi or in human brains removed and fixed shortly after death.