Neuroscience
-
In Mammals adult neurogenesis is influenced by environmental conditions, and the glucocorticoid hormones (GC) play a major role in this regulation. In contrast in fish, the study of the effects of cortisol on the regulation of environmental driven adult neurogenesis has produced conflicting results. While in some species elevated cortisol levels impair cell proliferation, in others, it promotes cell proliferation and differentiation. ⋯ Therefore, fish were exposed to a positive (conspecific shoal) or negative (predator) social experience, and the interaction between the valence of the social context and cortisol exposure (acute and chronic) was tested. Our results indicate that adult neurogenesis is modulated by the social environment, with the number of newly generated cells being dependent on the valence of the social information (positive > negative). These effects were independent of cortisol, either for acute or chronic exposure, highlighting the social environment as a key factor in the modulation of cell proliferation in the adult zebrafish brain, and rejecting a role for cortisol in this modulation.
-
Understanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines. ⋯ In contrast to above decreased WT distances, intra-NAc AP-1 inhibition in LVR rats increased nightly running distance in comparison to LVR control rats (p = 0.0008). Further analysis identified gene products that are associated with regulating intracellular Ca2+ homeostasis, calcium ion binding and neuronal excitability. In short, our study aims to gain a comprehensive understanding of transcriptional profile that was due to AP-1 inhibition in NAc, in which it could not only enhance the knowledge regarding molecular regulatory loops within NAc for modulating voluntary running behavior, but also provide further insights into molecular targets for future investigations.
-
Fragile XSyndrome (FXS) is a leading known genetic cause of Autism Spectrum Disorders (ASD) and intellectual disability. A consistent and debilitating phenotype of FXS is sensory hypersensitivity that manifests strongly in the auditory domain and may lead to delayed language and high anxiety. The mouse model of FXS, the Fmr1 KO mouse, also shows auditory hypersensitivity, an extreme form of which is seen as audiogenic seizures (AGS). ⋯ Treatment with a combination of NLX-101 and 5-HT1A receptor antagonists prevented the protective effects of NLX-101, indicating that NLX-101 acts selectively through 5-HT1A receptors to reduce audiogenic seizures. NLX-101 (1.8 mg/kg) was still strongly effective in reducing seizures even after repeated administration over 5 days, suggesting an absence of tachyphylaxis to the effects of the compound. Together, these studies point to a promising treatment option targeting post-synaptic 5-HT1A receptors to reduce auditory hypersensitivity in FXS, and potentially across autism spectrum disorders.
-
Sensory information in the brain is organized into spatial representations, including retinotopic, somatotopic, and tonotopic maps, as well as ocular dominance columns. The spatial representation of sensory inputs is thought to be a fundamental organizational principle that is important for information processing. Topographic maps are plastic throughout an animal's life, reflecting changes in development and aging of brain circuitry, changes in the periphery and sensory input, and changes in circuitry, for instance in response to experience and learning. Here, we review mechanisms underlying the role of activity in the development, stability and plasticity of topographic maps, focusing on recent work suggesting that the spatial information in the visual field, and the resulting spatiotemporal patterns of activity, provide instructive cues that organize visual projections.
-
The main focus of research for which Friedrich Bonhoeffer's work is known in the Neuroscience community was pioneer experiments on how axonal projections could organize into "maps", what mechanisms are involved in axon guidance and involve gradients of guiding molecules, and isolation of the first such molecules, e.g. RAGS (ephrin A5) and RGM (repulsive guidance molecule). ⋯ In the mid-eighties, I made a 2-year stay in his lab and initiated a line of research on development of binocular connections in Mammals, particularly the guidance of retinal fibers to one or the other side of the brain. In this paper I recall these circumstances as they pertain to Neuroscience as it stood at the time, and explain as best as I can how his lab was a conducive setting for the discoveries made there and how Friedrich Bonhoeffer acted for me as a scientist and a tutor.