Neuroscience
-
Partial sciatic nerve injury, a model of neuropathic pain, elicits a variety of neurochemical, electrophysiological and neuroanatomical changes in primary sensory neurons. We have used the technique of messenger RNA differential display to identify genes with altered expression in these neurons which may contribute to the development of aberrant sensation following such peripheral nerve damage. This approach identified 14 distinct complementary DNA clones, representing transcripts with increased ipsilateral expression in L4/5 dorsal root ganglia, two weeks after unilateral partial ligation of the rat sciatic nerve. ⋯ Their localisations, examined with in situ hybridization in L5 dorsal root ganglia, were limited in each case to a sub-population of neuronal profiles. Those neuronal profiles that demonstrated muscle LIM protein hybridization were distributed across the profile size range, whereas the distribution of acidic epididymal glycoprotein-positive profiles appeared to be skewed towards smaller profiles. The induction of muscle LIM protein and acidic epididymal glycoprotein in dorsal root ganglia may play an important functional role in the adaptive response of primary sensory neurons following partial sciatic nerve injury.
-
We recently demonstrated that stress-induced cognitive deficits in rats do not correlate with hippocampal neuronal loss. Working on the premise that subtle structural changes may however be involved, we here evaluated the effects of chronic stress on hippocampal dendrite morphology, the volume of the mossy fiber system, and number and morphology of synapses between mossy fibers and CA3 dendritic excrescences. To better understand the mechanisms by which stress exerts its structural effects, we also studied these parameters in rats given exogenous corticosterone. ⋯ These alterations were partially reversible following rehabilitation from stress or corticosterone treatments. The fine structural changes, which resulted from prolonged hypercortisolism, were accompanied by impairments in spatial learning and memory; the latter were undetectable following rehabilitation. We conclude that there is an intimate relationship between corticosteroid levels, hippocampal neuritic structure and hippocampal-dependent learning and memory.
-
The cornea is innervated by three functional types of neurons: mechanosensory, polymodal and cold-sensitive neurons, all of which are presumed to be nociceptive. To explore if corneal neurons constitute a heterogeneous population according to their electrophysiological properties, intracellular recordings were made in vitro from trigeminal ganglion neurons innervating the cornea of the mouse. Corneal neurons were labelled with FluoroGold applied after a corneal epithelial wound. ⋯ Neurons with a slower action potential showing a hump in the repolarization phase are both corneal Adelta and C polymodal nociceptive neurons, a type of cell in which tetrodotoxin-resistant Na(+) channels have been identified. The possibility is raised that the small population of neurons with a very high input resistance are cold-sensitive neurons. From the present results, we suggest that the electrophysiological properties of primary sensory neurons innervating the cornea are attributable not only to their conduction velocities, but also to the functional characteristics of their peripheral nerve terminals.
-
GABA is one of the most important inhibitory neurotransmitters in the substantia nigra. Functions of GABA are mediated by two major types of GABA receptors, namely the GABA(A) and GABA(B) receptors. Subunits of both the GABA(A) and GABA(B) receptors have been cloned and functional characteristics of the receptors depend on their subunit compositions. ⋯ In addition, triple-labeling experiments revealed that at the single cell level, the tyrosine hydroxylase-positive, i.e. the dopaminergic neurons in the compacta displayed intense immunoreactivity for GABA(B)R1 but not GABA(A)alpha1 receptors. The parvalbumin-positive neurons in the reticulata displayed intense immunoreactivity for GABA(A)alpha1 but not GABA(B)R1 receptors. The present results demonstrate in the same sections that there is a distinct pattern of localization of GABA(B)R1 and GABA(A)alpha1 receptor immunoreactivity in different subpopulations of the rat substantia nigra and provide anatomical evidence for GABA neurotransmission in the subpopulations of nigral neurons.
-
Striatal nicotinic acetylcholine receptors with high affinity for nicotinic agonists are involved with the release of a number of neurotransmitters, including dopamine. Previous findings as to whether these receptors are changed in Parkinson's disease and Alzheimer's disease are inconsistent and no previous investigations have focused on these receptors in dementia with Lewy bodies and schizophrenia, which are also associated with disorders of movement. The present autoradiographic study of striatal [3H]nicotine binding in Alzheimer's and Parkinson's diseases, dementia with Lewy bodies and schizophrenia was conducted with particular reference to the potentially confounding variables of tobacco use and neuroleptic medication. [3H]Nicotine binding in both dorsal and ventral caudate and putamen was significantly reduced in Parkinson's disease (43-67%, n=13), Alzheimer's disease (29-37%, n=13) and dementia with Lewy bodies (50-61%, n=20) compared to age-matched controls (n=42). ⋯ In contrast, striatal [3H]nicotine binding in a group of elderly (56-85 years) chronically medicated individuals with schizophrenia (n=6) was elevated compared with the entire control group (48-78%, n=42) and with a subgroup that had smoked (24-49%, n=8). The changes observed in [3H]nicotine binding are likely to reflect the presence of these receptors on multiple sites within the striatum, which may be differentially modulated in the different diseases. Further study is warranted to explore which nicotinic receptor subunits and which neuronal compartments are involved in the changes in [3H]nicotine binding reported, to aid development of potential nicotinic receptor therapy.