Neuroscience
-
Corticotropin releasing factor is a 41 amino acid peptide that is present in afferent systems that project to the cerebellum. In the adult, this peptide modulates the activity of Purkinje cells by enhancing their responsiveness to excitatory amino acids. Two different types of corticotropin releasing factor receptors, designated type 1 and type 2, have been identified. ⋯ Finally, numerous elongated processes within the white matter, which are likely to be axons, also are type 2 immunoreactive. These data indicate that both types of corticotropin releasing factor receptor are present in the mouse cerebellum. However, the unique distribution of the two types of receptor strongly suggests a differential role for corticotropin releasing factor in modulating the activity of neurons, axons and glial cells via cell-specific ligand-receptor interactions.
-
We reviewed epidemiological and experimental studies of female gonadal hormone replacement therapy (HRT) on cognitive function in post-menopausal women and carried out meta-analyses. In healthy ageing women, HRT has small and inconsistent effects that include enhancement of verbal memory, abstract reasoning and information processing. Epidemiological studies show larger effects than experimental studies, which is not related to sample size. ⋯ Three recent controlled experimental studies using Premarin showed no effects of HRT in preventing further cognitive decline in women who already have Alzheimer's disease. Duration of treatment seems to play an important role, with beneficial effects declining-and even reversing-with longer treatment in women with Alzheimer's disease. Future research should further investigate the cognitive effect of different HRT preparations, serum estrogen levels, and the interactions of HRT with age, menopausal status and existing protective (e.g. education) and risk factors (e.g. smoking and apolipoprotein E genotype) for cognitive decline and Alzheimer's disease.
-
Neurodegenerative diseases, traumatic brain injury and stroke are likely to result in cognitive dysfunctioning. Animal models are needed in which these deficits and recovery of the affected functions can be investigated. In the present study, the entorhinal area was chosen as the target for lesioning and for assessing the lesion-induced deficits in the Morris water maze. ⋯ The degree of the induced spatial learning impairments and the effects on the rate of acquisition during training, however, differed between experiments. This result suggests that the fundamental biological diversity between shipments of rats can account for variation in the effects of parahippocampal damage on spatial learning even in highly standardized experimental set-ups. Rats lesioned by bilateral injections of ibotenic acid into the entorhinal cortex provide an interesting and reliable model for investigating cognitive dysfunctions in neurodegenerative diseases, stroke or traumatic brain injury.
-
Intrathecal strychnine (glycine antagonist) or bicuculline (GABA(A) antagonist) yields a touch-evoked agitation that is blocked by N-methyl-D-aspartate receptor antagonism. We examined the effects of intrathecal strychnine and bicuculline on touch-evoked agitation and the spinal release of amino acids. Fifty-two Sprague-Dawley rats were prepared under halothane anesthesia with a lumbar intrathecal catheter and a loop dialysis catheter. ⋯ Intrathecal N-methyl-D-aspartate, strychnine and bicuculline produced similar touch-evoked allodynia. Intrathecal bicuculline and N-methyl-D-aspartate alone evoked a transient spinal release of glutamate and taurine, but not serine, in the 0- 10 min sample, while strychnine did not affect spinal transmitter release at any time. As GABA(A) but not glycine receptor inhibition at equi-allodynic doses increases glutamate release, while the allodynia of both is blocked by N-methyl-D-aspartate receptor antagonism, we hypothesize that GABA(A) sites regulate presynaptic glutamate release, while glycine regulates the excitability of neurons postsynaptic to glutamatergic terminals.