Neuroscience
-
Episodic ataxia type 1 is a rare, autosomal dominant neurological disorder caused by missense mutations of the Kv1.1 gene from the Shaker K+ channel subfamily. To study the functional effects of the disease-causing mutations in a robust K+ channel background, we introduced seven different episodic ataxia type 1 substitutions into the corresponding, conserved residues of the Shaker K+ channel. K+ channel currents expressed in Xenopus oocytes were studied by electrophysiology. ⋯ All mutations altered the voltage range of steady-state inactivation; most changes were coupled to the changes in activation gating. Some episodic ataxia type 1 mutants also caused significant changes in the kinetics of N-type (F307I, E395D) or C-type (F307I, E395D, V478A) inactivation. These results suggest that episodic ataxia type 1 mutations may change K+ channel function by two mechanisms: (i) reduced channel expression and (ii) altered channel gating.
-
Inflammation and hyperalgesia induce a dramatic up-regulation of opioid messenger RNA and peptide levels in nociceptive neurons of the spinal dorsal horn. Descending axons modulate nociceptive transmission at the spinal level during inflammatory pain, and may play a role in the development of persistent pain. The role of descending bulbospinal pathways in opioid-containing nociceptive neurons was examined. ⋯ These data suggest that increased dynorphin messenger RNA ipsilateral to inflammation, in rats without descending axons, was due to increased expression within the same cells and not to recruitment of additional dynorphin-expressing cells. This reflects a greater dynamic response of nociceptive neurons to noxious stimuli in the absence of descending modulation. Therefore, the net effect of descending afferents on spinal nociceptive circuits may be to reduce the response of opioid-containing neurons to noxious stimulation from the periphery.
-
This study was carried out in order to examine the effects of acute or chronic L-DOPA treatment on striatally expressed FosB- and JunB-like proteins in a rat model of Parkinson's disease. Rats with a unilateral, near-total 6-hydroxydopamine lesion of the ascending mesostriatal projection received either an acute challenge or a one-week treatment with 10 mg/kg/day methyl L-DOPA (combined with 15 mg/mg benserazide), and were killed at either 3 h or two days post-injection. Both acute and chronic L-DOPA treatment caused a pronounced, persistent increase in the number of FosB-like immunoreactive cells in the dopamine-denervated striata (five- and seven-fold increase, respectively, above the levels found in lesioned but non-drug-treated controls), but the two treatment groups differed markedly with respect to both the average amount of staining per cell, which was two-fold larger in the chronic L-DOPA cases, and the anatomical distribution of the labeled cells. ⋯ However, JunB did not exhibit prolonged expression kinetics, and was somewhat down-regulated in the chronically compared with the acutely L-DOPA-treated rats. The present results show that L-DOPA administration produces a long-lasting increase in the levels of FosB-, but not JunB-like immunoreactivity in the dopamine-denervated striatum. More importantly, these data show that striatal induction of FosB- and JunB-like proteins by chronic L-DOPA treatment exhibits both regional and compartmental specificity.
-
A subset of familial cases of amyotrophic lateral sclerosis are linked to missense mutations in copper/zinc superoxide dismutase type 1. Patients with missense mutations in copper/zinc superoxide dismutase type 1 develop a paralytic disease indistinguishable from sporadic amyotrophic lateral sclerosis through an unknown toxic gain of function. Nitric oxide reacts with the superoxide anion to form the strong oxidant, peroxynitrite, which participates in neuronal injury in a variety of model systems. ⋯ Levels of neuronal nitric oxide synthase as well as Ca2+-dependent nitric oxide synthase catalytic activity in the copper/zinc superoxide dismutase type 1 mutant mice do not differ from wild type mice. Endothelial nitric oxide synthase levels may be decreased in the copper/zinc superoxide dismutase type 1 mutant mice. Together, these results do not support a significant role for neuronal-derived nitric oxide in the pathogenesis of familial amyotrophic lateral sclerosis transgenic mice.
-
Inflammation of peripheral tissues evokes spontaneous pain and an increased responsiveness to external stimuli known as hyperalgesia, produced by both peripheral and central changes. The central component is initiated by a sustained afferent barrage produced by sensitized peripheral nociceptors, but it is unclear to which extent ongoing nociceptive input is required to maintain these central changes. Here, we have used an isolated preparation of the spinal cord in vitro obtained from eight- to 12-day-old rats to examine spinal plasticity in the absence of naturally occurring afferent inputs. ⋯ In contrast, maximal behavioural hyperalgesia was observed by 3 h post-carrageenan, and thermal hyperalgesia had resolved by 20 h, although mechanical hyperalgesia remained. These results show that the induction of spinal plasticity independent of peripheral input is a progressive process with a slow time-course, since significant hyperreflexia in the isolated spinal preparation appears 6 h after inflammation and develops further within 20 h. We conclude that during the first 3 h following inflammation, hyperalgesia is the result of peripheral sensitization and of central mechanisms that depend on an ongoing peripheral input and thus changes were not observed in the isolated spinal cord.