Neuroscience
-
Stimulation of the cornea activates neurons in two distinct regions of the spinal trigeminal nucleus: at the transition between trigeminal subnucleus interpolaris and subnucleus caudalis and at the transition between trigeminal subnucleus caudalis and the upper cervical spinal cord as estimated by expression of the immediate early gene, c-fos. To determine if receptors for substance P or neurokinin A, neurokinin 1 and neurokinin 2 receptors, respectively, contribute to the production of Fos-positive neurons in these brainstem regions, receptor-selective antagonists were given intracerebroventricularly 15 min prior to stimulation of the cornea in anesthetized rats. The number of Fos-positive neurons produced in superficial laminae at the trigeminal subnucleus caudalis/cervical cord transition by application of the selective small fiber excitant, mustard oil, to the corneal surface was reduced by the neurokinin 1 receptor antagonist, CP99,994 (5-100 nmol, i.c.v.) and the neurokinin 2 receptor antagonist, MEN10,376 (0.01-1.0 nmol, i.c.v.). ⋯ Tachykinin receptor antagonists did not reduce the number of Fos-positive neurons produced at the subnucleus interpolaris/subnucleus caudalis transition. The elevation in plasma concentration of adrenocorticotropin, but not the increases in arterial pressure or heart rate, evoked by corneal stimulation was prevented by pretreatment with CP99,994 or MEN10,376 at doses lower than those needed to reduce c-fos expression. The results indicate that receptors for substance P and neurokinin A contribute to the transmission of sensory input from corneal nociceptors to brainstem neurons in trigeminal subnucleus caudalis and to increased activity of the hypothalamo-pituitary axis that accompanies acute stimulation of the cornea.
-
Glial cell line-derived neurotrophic factor (GDNF) has two receptors, receptor-tyrosine kinase c-ret and glycosylphosphatidylinositol-linked cell surface receptor GDNFRalpha. Kainate-induced seizures, a widely studied model of neuronal plasticity and human epilepsy, have been shown to increase gene expression of several trophic factors, including GDNF, in the rat hippocampus. Here we show that systemic kainate-induced excitation leads to a transient increase of both c-ret and GDNFRalpha messenger RNAs in the rat brain. ⋯ GDNFRalpha messenger RNA was prominently induced in the dentate gyrus of the rat hippocampus, less in the habenular and reticular thalamic nuclei and cerebral cortex as revealed by in situ hybridization. C-ret transcripts were induced in the hilus of the hippocampus, several thalamic and amygdala nuclei and in superficial layers of the piriform cortex. These data suggest that GDNF and its receptors may play a local role in neuronal plasticity and in neuronal protection following epileptic insults.
-
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with diverse biological functions. Signal transduction of GDNF is mediated by binding to a glycosyl-phosphatidylinositol (GPI)-linked receptor GDNFR-alpha and activation of c-RET tyrosine kinase. The recent discovery of a new GDNF homolog neurturin raises the possibility that multiple receptors exist for the members in the GDNF family. ⋯ A laminar pattern of expression was detected in layer III of the cortex. Treatment with GDNF of PC12 cells transfected with the GDNFR-beta gene activated mitogen-activated protein kinase (MAPK) and elicited neurite outgrowth. GDNFR-alpha and GDNFR-beta together form a new family of GPI-linked receptors for GDNF-like molecules.
-
The purpose of the present study was to investigate whether differences in the function of monoaminergic systems could account for the variability in attention and impulsive behaviour between rats tested in the five-choice serial reaction time task in a model of attention deficit hyperactivity disorder. The ability of a rat to sustain its attention in this task can be assessed by measuring choice accuracy (percent correct responses) to visual stimuli, whereas the percentage of premature responses indicates the level of impulsivity. Following training with the five-choice serial reaction time task, rats were decapitated and brain pieces taken for neurochemical determination. ⋯ According to the regression analysis, a negative correlation existed between the left frontal cortex 5-hydroxyindoleacetic acid/5-hydroxytryptamine and choice accuracy, and a positive correlation was observed between 3,4-dihydroxyphenylacetic acid/dopamine ratio and choice accuracy on the opposite hemisphere. Additionally, right frontal cortex serotonin utilization was found to correlate positively with the proportion of premature hole responses and this relation accounted for about 24% of the variability in this index of impulsivity between animals. These data indicate that frontal cortex dopamine and serotonin play an important role in the modulation of attention and response control.
-
We investigated the effects of the cholinergic agonist carbachol (25 microM) on the synaptic potentials recorded extracellularly and intracellularly from the CA3 area of immature hippocampal slices of the rat (postnatal days 10-20). In control conditions, carbachol reduced the amplitude of evoked synaptic responses (n=8) and did not induce any spontaneous synchronous activity (n=12); the depressant effect of carbachol was mimicked by acetylcholine (100 microM, in eserine 10 microM, n=5) and was reversed by the muscarinic antagonist atropine (1 microM, n=2). The GABA(A)-receptor antagonist bicuculline (10 microM) enhanced the amplitude and duration of the evoked synaptic responses and induced infrequent (0.016-0.045 Hz) spontaneous synchronous discharges in 23/37 of the slices. ⋯ In addition, these discharges were reversibly blocked by high Ca2+ perfusion medium (7 mM CaCl2, n=4) and by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM, n=7). Synchronous epileptiform discharges were recorded from both CA1 and CA3 areas in intact slices (n=3), but only from CA3 following disruption of the CA1-CA3 synaptic connections (n=3). These experiments suggest that activation of muscarinic receptors during blockade of GABA(A)-mediated potentials, may enhance synchronous epileptiform activity in immature (postnatal days 10-20) hippocampus, through activation of local excitatory circuits and that endogenous acetylcholine may be sufficient to play this role.