Neuroscience
-
The role of 5-hydroxytryptamine and its receptor subtypes in the development of acute inflammation was investigated using the rat paw formalin test as a model for pain (measured by flinching behavior) and edema formation (measured by plethysmometry). The role of endogenously released 5-hydroxytryptamine was assessed using 5-hydroxytryptamine receptor subtype-selective antagonists co-injected with 2.5% formalin, while the receptor subtypes involved in the inflammatory process were further defined by co-injection of 5-hydroxytryptamine or 5-hydroxytryptamine receptor subtype-selective agonists with 0.5% formalin in anticipation of an augmented response. When co-administered with 2.5% formalin, propranolol, tropisetron or GR113808A, but not ketanserin, effectively blocked nociceptive behavior. ⋯ These data suggest involvement of 5-hydroxytryptamine1, 5-hydroxytryptamine2 and possibly 5-hydroxytryptamine4 receptors in edema formation. These results confirm the involvement of 5-hydroxytryptamine1 and 5-hydroxytryptamine3 receptor subtypes in peripheral nociception associated with acute inflammation and further suggest an involvement of the more recently characterized 5-hydroxytryptamine4 receptor in this process. There appears to be a dissociation in 5-hydroxytryptamine receptors involved in peripheral nociception and edema formation.
-
Stimulant-induced exocytosis has been demonstrated in sympathetic ganglia of the rat by in vitro incubation of excised ganglia in the presence of tannic acid, which stabilizes vesicle cores after their exocytotic release. Sites of exocytosis were observed along non-synaptic regions of the surfaces of neuron somata and dendrites, including regions of dendrosomatic and dendrodendritic apposition, as well as along the surfaces of nerve terminals About half the exocytoses associated with nerve terminals were parasynaptic or synaptic, and these appeared mostly to arise from the presynaptic terminal, but occasionally from the postsynaptic element. The results demonstrated that the neurons of sympathetic ganglia release materials intraganglionically in response to stimulation, that release from different parts of the neuron is subject to independent regulation, at least via cholinergic receptors, and that release is partly diffuse, potentially mediating autocrine or paracrine effects, and partly targeted toward other neurons, but that the latter mode is not necessarily, and not evidently, synaptic. ⋯ Over all conditions, disproportionately more sites of somatic and dendritic exocytosis were found to be located in regions of dendrosomatic and dendrodendritic apposition than would be expected from the relative extent of the neuronal surface occupied by these relationships. Such mechanisms of intraganglionic release may be expected to contribute to the regulation and integration of the behaviour of the various functionally distinctive populations of neurons in these ganglia, by autocrine, paracrine, and focal, neuroneuronal, routes of action. Similar phenomena of exocytotic soma-dendritic release might prove to subserve integrative neuroneuronal interactions more widely throughout the nervous system.
-
Anatomically coupled neurons (17 of 137) and non-coupled neurons (120 of 137), in and near the nucleus tractus solitarius and dorsal motor nucleus (i.e. solitary complex), were studied by rapid perforated patch recording in slices (rat, 150-350 microm thick, postnatal day 0-21) before, during and after exposure to hypercapnic acidosis. Anatomical coupling refers to the intercellular transfer of Lucifer Yellow and Biocytin into adjoining neurons, presumably via gap junctions [see Dean et al. (1997) Neuroscience 80, 21-40]. Eighty-six per cent of the anatomically coupled neurons (12 of 14) were depolarized by hypercapnic acidosis, a response referred to as CO2 excitation or CO2 chemosensitivity. ⋯ It was not determined whether anatomical coupling was affected by hypercapnic acidosis since dye mixture was always administered under normocapnic conditions. The high correlation between anatomical coupling, electrotonic coupling activity and CO2-induced depolarization suggests that cell-cell coupling is an important electroanatomical feature in CO2-excited neurons of the solitary complex. CO2-excited neurons have been hypothesized to function in central chemoreception for the cardiorespiratory control systems, suggesting that cell cell coupling may contribute in part to central chemoreception of CO2 and H+.
-
The importance of receptors for N-methyl-D-aspartate in synaptic plasticity and in triggering long-term pronociceptive changes is explained by their voltage-dependence. This suggests that their contribution to acute nociceptive responses would be determined both by the magnitude of synaptic input and by the level of background excitation. We have now examined the role of N-methyl-D-aspartate receptors in acute nociceptive transmission in the spinal cord. ⋯ The results indicate that under these conditions in vivo, N-methyl-D-aspartate receptors mediate ongoing low-frequency background activity rather than phasic high-frequency nociceptive responses. The effects of N-methyl-D-aspartate antagonists and positive modulators on nociceptive responses are evidently indirect, being secondary to changes in background synaptic excitation. These results cannot be explained simply in relation to the voltage-dependence of N-methyl-D-aspartate receptor-mediated activity; other factors, such as modulation by neuropeptides, must be involved.
-
Glial cell line-derived neurotrophic factor was initially identified as a survival factor for developing midbrain dopamine neurons (for reviews, see Refs 17 and 19). Subsequent studies have demonstrated a more wide-spread role for glial cell line-derived neurotrophic factor in the developing and adult CNS. In the adult rat brain, for instance, prior administration of glial cell line-derived neurotrophic factor protects nigrostriatal dopamine neurons from 6-hydroxydopamine-induced damage. ⋯ Following extensive unilateral 6-hydroxydopamine lesions of the medial forebrain bundle, ret immunoreactivity in the substantia nigra and striatum was reduced significantly, to a similar extent as tyrosine hydroxylase immunoreactivity. In contrast, excitotoxic lesions of the striatum, achieved by intrastriatal quinolinic acid injections, resulted in increased ret staining in this brain region. In addition, marked decrements in septal ret immunoreactivity were consequent to complete transections of the fimbria-fornix.