Neuroscience
-
The effect intracerebroventricular injections of angiotensin II (0.1 nm), angiotensin-(1-7) (1 or 100 nm) and carbachol (500 ng) on c-fos expression was examined in the forebrain of Lister hooded rats. Intense staining of the c-Fos protein was found in the median preoptic nucleus, organum vasculosum of the lamina terminalis, subfornical organ, paraventricular nucleus and supraoptic nucleus after angiotensin II and carbachol Angiotensin II caused significantly more c-fos expression in the ventral median preoptic nucleus and organum vasculosum of the lamina terminalis than carbachol, whereas in the paraventricular and supraoptic nuclei this was reversed, with carbachol having a greater effect on c-fos expression in these areas. Angiotensin-(1-7), however, only induced c-Fos protein in the organum vasculosum of the lamina terminalis and median preoptic nucleus with the number and the intensity of staining of the nuclei significantly less in both areas than after angiotensin II or carbachol. ⋯ Angiotensin II and carbachol caused an approximate five-fold increase in plasma vasopressin levels compared to cerebrospinal fluid-injected rats, but angiotensin-(1-7) had no effect on vasopressin release. Therefore, three compounds with widely differing effects on thirst, sodium appetite and vasopressin release induce distinctive patterns of c-fos protein expression in the forebrain. By combining experimental approaches in this way it is possible to determine areas of the brain which are involved in certain behavioural and endocrine responses.
-
[3H]Noradrenaline release was studied in cultured sympathetic neurons derived from superior cervical ganglia of neonatal rats. Acetylcholine elicited a concentration- and time-dependent increase in 3H outflow which was half-maximal at about 300 microM and within 5 s. The overflow induced by 10 s exposure to 300 micro A acetylcholine was reduced by the nicotinic antagonist hexamethonium, but increased by the muscarinic antagonist atropine. ⋯ The acetylcholine-induced transmitter release is based on two mechanisms, one involving and the other one bypassing voltage-dependent Ca2+ channels. alpha2-Adrenoceptor activation reduces voltage-activated Ca2+ currents and effects exclusively the component of acetylcholine-induced release which involves voltage-dependent Ca2+ channels. These results support the hypothesis that voltage-activated Ca2+ channels are the sole site of autoinhibitory alpha2-adrenergic effects on transmitter release from rat sympathetic neurons. The inhibitory effects of alpha2-adrenoceptor agonists and antagonists on currents through nicotinic acetylcholine receptors are not mediated by an alpha2-adrenoceptor.
-
It has recently been observed that nerve growth factors induces the rapid onset of thermal hyperalgesia, and the more delayed onset of mechanical hyperalgesia when administered to mature rats. Though several mechanisms have been proposed to explain this phenomenon, it is still not well understood. Previous studies have shown that nerve growth factor can directly excite nociceptive sensory ganglion neurons in culture via activation of kappa excitatory opioid receptors. ⋯ Opiate antagonists and anti-nerve growth factor antibody both interfered with Freund's adjuvant-induced inflammatory hyperalgesia. Altogether, these observations suggest that activation of excitatory opioid receptors plays a role in mediating nerve growth factor-induced hyperalgesia and that, in turn, nerve growth factor contributes to the hyperalgesia associated with inflammatory states. Since opioid receptor antagonists are well tolerated clinically, they may be useful for patients receiving nerve growth factor as part of ongoing trials of the factor in peripheral neuropathy.
-
Recent neuroanatomical data suggest that the axons and terminals of serotonergic neurons of the dorsal and median raphe nuclei are morphologically and pharmacologically distinct. Here we attempted to establish a functional in vivo model of serotonergic terminals derived from these nuclei, and then carry out a preliminary comparison of their physiological and pharmacological properties. Brain microdialysis was used to monitor extracellular 5-hydroxytryptamine in the hippocampus (dorsal and median raphe innervation) and frontal cortex (preferential dorsal raphe innervation) of the anaesthetized rat. ⋯ In summary, our data show that electrical stimulation of the dorsal or median raphe nucleus releases 5-hydroxytryptamine in a regionally specific manner (hippocampus versus frontal cortex), suggesting that serotonergic nerve terminals of the dorsal and median raphe pathways were being activated selectively. Using this model, we found no differences in the responsiveness of dorsal and median raphe pathways to a specific set of physiological and pharmacological manipulations. In particular, our data suggest that the neurotoxic action of p-chloroamphetamine may not be targeted solely on serotonergic axons and terminals of the dorsal raphe nucleus but includes those of the median raphe nucleus.
-
Recent evidence suggests that N-methyl-D-aspartate receptors play an important role in the etiology and maintenance of chronic nociception. Previous studies have demonstrated that tissue injury or stimulation of nociceptive afferent projections results in the expansion of receptive fields, hyperalgesia and C-fiber-induced wind-up, events that can be inhibited by N-methyl-D-aspartate antagonists. This study examines the effect of unilateral hind paw inflammation on N-methyl-D-aspartate R1 messenger RNA and [125I]dizocilpine maleate binding in the L4-L5 segments of the lumbar spinal cord of rats. ⋯ In lamina X, a postinjection decrease in hybridization signal was observed at 7.5 h and seven days. A bilateral decrease in [125I]dizocilpine maleate binding was observed in laminae I and II at three, seven and 20 days after paw injection. This observed decrease in binding at the N-methyl-D-aspartate receptor suggests a compensatory mechanism by which N-methyl-D-aspartate-mediated nociceptive events may be modulated.