Neuroscience
-
Autism spectrum disorder (ASD) is a neurodevelopmental disorder displaying the modification of complex human behaviors, characterized by social interaction impairments, stereotypical/repetitive activities and emotional dysregulation. In this study, fecal microbiota transplant (FMT) via gavage from autistic children donors to mice, led to the colonization of ASD-like microbiota and autistic behaviors compared to the offspring of pregnant females exposed to valproic acid (VPA). Such variations seemed to be tightly associated with increased populations of Tenericutes plus a notable reduction (p < 0.001) of Actinobacteria and Candidatus S. in the gastrointestinal region of FMT mice as compared to controls. ⋯ Moreover, the observed FMT-dependent alterations were linked to a decrease in the methylation status. Overall, findings of the present study corroborate a key role of gut microbiota in ASD. However, further investigations are required before any possible manipulation of gut bacteria with appropriate diets or probiotics can be conducted in ASD individuals.
-
In presymptomatic amyotrophic lateral sclerosis (ALS), spinal motoneurons (MNs) have reduced firing patterns and synaptic excitation levels. Preliminary data indicated that in the SOD1 G93A mouse model of ALS, monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in spinal MN by Ia proprioceptive afferent stimulation could be facilitated by trans-spinal direct current stimulation (tsDCS). However, which element of the Ia afferent-MN circuit is affected by tsDCS, and whether tsDCS-induced EPSP facilitation is a general phenomenon or specific to the superoxide dismutase type-1 (SOD1) Glycine to Alanine substitution at position 93 (G93A) mutation, remain to be determined. ⋯ Moreover, anodal tsDCS failed to induce any long-lasting changes in MN passive membrane properties in both SOD1 and WT mice. Conversely, cathodal tsDCS decreased Ia afferent induced EPSP amplitudes only during current application in SOD1 MNs, and no significant effects on Ia afferents excitability were observed. Our findings indicate the high susceptibility of SOD1 MNs to tsDCS and highlight the potential of this neuromodulation technique for the treatment of ALS.
-
Cerebral ischemia/reperfusion injury (CIRI) is closely related to mitochondrial dysfunction in astrocytes. Therefore, based on glucose transporter 1 (GLUT1), which is highly expressed in the brain tissue of rats with CIRI, we design a kind of brain-targeted dexmedetomidine (Man@Dex) nanomicelles. The results showed that Man@Dex not only had the advantages of small particle size, stability and non-toxicity, but also realized brain-targeted drug delivery. ⋯ The CIRI rat model was constructed and confirmed by hematoxylin and eosin (HE), Triphenyl-2H-tetrazolium chloride (TTC) staining and nerve defect score. It indicated that Man@Dex could alleviate CIRI and improve MMP, which was beneficial to the recovery of brain injury in rats. This research provides a new theoretical basis and target for the development of brain-targeted nano-drugs of CIRI.
-
Diffusion Tensor Imaging (DTI) and Manganese Enhanced MRI (MEMRI) are noninvasive tools to characterize neural fiber microstructure and axonal transport. A combination of both may provide novel insights into the progress of neurodegeneration. To investigate the relationship of DTI and MEMRI in white matter of tauopathy, twelve optic nerves of 11-month-old p301L tau mice were imaged and finished with postmortem immunohistochemistry. ⋯ Immunohistochemistry findings showed that ONAR, mD, and rD are significantly correlated with the myelin content (Myelin Basic Protein, p < 0.05) but not with the axonal density (SMI-31), tubulin density, or tau aggregates (AT8 staining). In summary, slower axonal transport appeared to have less myelinated axons and thinner remaining axons, associated with reduced rD and mD of in vivo DTI. A combination of in vivo MEMRI and DTI can provide critical information to delineate the progress of white matter deficits in neurodegenerative diseases.
-
Endocytosis of GluA2-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in CA1 of the hippocampus regulates forgetting; deficits in forgetting nociceptive memory can induce serious stress disorders. As a transporter of GluA2-containing AMPAR, the functions of glutamate receptor interacting protein 1 (GRIP1) in forgetting and possible stress responses remain unclear. Lentivirus-mediated interference of GRIP1 expression or function in the dorsal CA1 of the hippocampus in mice indicated that GRIP1 overexpression enhanced spatial memory, impaired forgetting in a Barnes maze, and induced anxiety-like behavior in the open field and elevated plus-maze test. ⋯ In vitro experiments showed that GRIP1-ov and -dn, inhibition of PDZ2 and PDZ4/5 domains of GRIP1, and GluA2-dn decreased glycine-induced GluA1 and GluA2 exocytosis; meanwhile, GRIP1-ov and -dn, and interference of PDZ2 and PDZ4/5 domains of GRIP1 blocked AMPA- and NMDA-induced GluA1 and GluA2 endocytosis. Overall, these results suggest that GRIP1 drives AMPA receptor endocytosis and exocytosis bidirectionally; furthermore, GRIP1-induced stabilization of anchoring postsynaptic GluA1 and GluA2 impairs forgetting and induces anxiety-like behavior. GRIP1 may provide a potential therapeutic target in posttraumatic syndromes and anxiety disorders.