Neuroscience
-
Parkinson's disease (PD) is the second most common central neurodegenerative disease in the world after Alzheimer's disease (AD), which mainly occurs in middle-aged and elderly people, and is increasing with the aging of the population. With the increasing incidence of PD, it is particularly important to explore its pathology and provide effective interventions and treatments. The pathogenesis of PD involves a variety of factors such as genetics, environment, and age, and is not yet fully understood. ⋯ Currently, all treatments for PD are symptomatic and there is no radical cure. This paper reviews existing traditional and emerging treatments for PD to provide a theoretical basis for the in-depth study of PD pathogenesis and therapeutic approaches. Meanwhile, the application of gene editing and delivery, stem cell transplantation, immunotherapy and multi-target therapy laid the foundation for the development of safer, more effective and more comprehensive treatments for PD.
-
Multicenter Study
Deep learning-based segmentation of acute ischemic stroke MRI lesions and recurrence prediction within 1 year after discharge: A multicenter study.
To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year after discharge as well as to develop a model incorporating radiomics features and clinical factors to accurately predict AIS recurrence. ⋯ The MRA-UNet model can effectively improve the segmentation accuracy of MRI. The model, which was established by combining radiomics features and clinical factors, held some value for predicting AIS recurrence within 1 year.
-
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. ⋯ In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.
-
This study explored structural and functional alterations in the whole brain of stroke patients with hemiplegia. ⋯ This study identified key brain regions and characteristics that exhibit structural and functional changes following stroke injury.
-
Case Reports
Co-occurrence of Parkinson's disease and Retinitis Pigmentosa: A genetic and in silico analysis.
Parkinson's disease (PD) is primarily driven by the protein Alpha Synuclein (A-Syn) accumulation. Synphilin-1 protein, encoded by the SNCAIP gene, which co-localizes with A-Syn is a known risk factor for PD. Retinitis pigmentosa (RP), is a cluster of retinal degenerative disorders, and Cyclic Nucleotide Gated channel subunit Alpha 1 (CNGA1) is one of the initial genes associated with RP. Patients with PD can have various kinds of visual dysfunction as a non-motor manifestation, but to date, CNGA1 mutation and RP as a PD associated visual symptom has not been reported. We report a mutation in the SNCAIP gene in a PD patient, not reported earlier, and its co-occurrence with RP-associated CNGA1 gene mutation. ⋯ The current study has determined the co-occurrence of RP and PD, whole exome sequencing ascertains the mutations in SNCAIP and CNGA1 genes, which could be the cause of PD and RP co-occurrence.