Neuroscience
-
In pre-Covid days, many daily actions such as hand shaking or cheek kissing implied physical contact between our body and that of other people. With respect to touching an inanimate object (objectual touch), touching a person (social touch) concerns not only touching a human body, but also that this body belongs to a living person. This fundamental difference also may affect the way we figure our own movements and perceptions or, in other words, how we mentally represent our own body. ⋯ This suggests that the nature of hand-related tactile input (social or objectual touch) influences local (hand) and not global (body) mental representations of the body, and in a very somatotopic manner (hands but not feet). We interpret these findings with reference to the differentiation between sensorimotor (body schema) and visuospatial (body image) dynamics in the mental representation of our body. The present study shows that external social factors can affect the internal mental representations of one's own body.
-
Circular RNAs (circRNAs), forming a covalently closed loop, are identified as a special subgroup of non-coding RNAs. Herein, we investigated the function and underlying mechanism of circXRCC5, generated from the XRCC5 gene, in glioma progression. Bioinformatics analysis was employed to determine the genomic information of circXRCC5 derived from XRCC5 pre-mRNA. ⋯ There was a reciprocal negative feedback between circXRCC5 and miR-490-3p in an Argonaute2-dependent manner. Moreover, circXRCC5 acted as a sponge of miR-490-3p to regulate the expression of downstream target gene XRCC5, thus activating the transcription of CLC3, which fostered the progression of glioma. Collectively, circXRCC5 promoted glioma progression via the miR-490-3p/XRCC5/CLC3 ceRNA network, providing a novel prognostic biomarker and a prospective target for glioma treatment.
-
The intraparietal sulcus region, which is part of the posterior parietal cortex (PPC), has been shown to play an important role in discriminating object shapes using the fingers. Transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) are noninvasive strategies widely used to modulate neural activity in cortical regions. Therefore, we investigated the effects of tRNS and anodal tPCS applied to left or right PPC on the tactile discrimination performance of the right index finger in 20 neurologically healthy subjects. ⋯ Conducting tRNS over the left PPC significantly reduced the GOT discrimination performance in the high-performance group. By contrast, anodal tPCS delivered to the PPC of the left and right hemispheres had no significant effect on the tactile GOT discrimination performance of the right hand. We show that transcranial electric stimulation over the PPC may improve tactile perception but the effect depends on stimulus modality, parameters, and on the stimulated hemisphere.
-
The present study examined whether tactile perception of the fingertip modulates excitability of the motor cortex supplying the intrinsic hand muscle and whether this modulation is specific to the fingertip stimulated and the muscle and hand tested. Tactile stimulation was given to one of the five fingertips in the left or right hand, and transcranial magnetic stimulation eliciting motor evoked potential in the first dorsal interosseous muscle (FDI) or abductor digiti minimi was given 200 ms after the onset of tactile stimulation. The corticospinal excitability of the FDI at rest was suppressed by the tactile stimulation of the right middle fingertip, but such suppression was absent for the other fingers stimulated and for the other muscle or hand tested. ⋯ These findings indicate that tactile perception of the right middle fingertip suppresses excitability of the motor cortex supplying the right FDI at rest. The suppression of corticospinal excitability was absent during tonic contraction of the right FDI, indicating that the motor execution process interrupts the tactile perception-induced suppression of motor cortical excitability supplying the right FDI. These findings are in line with a view that the tactile perception of the right middle finger induces surround inhibition of the motor cortex supplying the prime mover of the finger neighboring the stimulated finger.
-
Transcranial direct current stimulation (tDCS) has been used to explore the causal relationship between specific brain regions and task switching. However, most studies have focused on the frontal cortex, and only few have examined other related cortices, e.g., the parietal cortex. So far, no prior study has systematically explored the tDCS-induced effect of the parietal cortex in different task switching types. ⋯ It was noted that compared with sham group, significantly higher switch cost reaction time of right anode tDCS (RA) group was found in predictable task but not unpredictable task. No interaction effect was observed between congruence and tDCS groups in predictable task. These findings suggested that a-tDCS over right parietal cortex could markedly decrease the predictable task-switching performance in both congruent and incongruent trials, and indicated that parietal cortex is more likely to be involved in the proactive cognitive processes, such as endogenous preparation.