Neuroscience
-
Dorsomedial hypothalamus (DMH) is a part of the feeding center involved in food intake and regulation of the metabolism. DMH neurons express many receptors for different metabolic cues which can modulate its network and influence animals' behaviour. One of the metabolic peptides deliveredto this structure is ghrelin, the only well-known hunger signal, produced mainly in the stomach. ⋯ We showed for the first time a day/night pattern of sensitivity to ghrelin in the DMH, with a higher level during the behaviorally active phase of animals. This day/night rhythm of sensitivity to ghrelin was reversed in HFD group, causing a stronger effect during the non-active phase. After prolongation of the HFD consumption to 7-8 weeks we observed an increase in the responsiveness to ghrelin, than during the short-term diet.
-
This study aimed to re-examine the receptor subtype that mediates the fever-producing effects of prostaglandin E2 (PGE2) in the rostral ventromedial preoptic area (rvmPOA) of the hypothalamus. Among the four subtypes of PGE2 receptors (EP1, EP2, EP3, and EP4), EP3 receptor is crucially involved in the febrile effects of PGE2. However, it is possible for other subtypes of PGE2 receptor to contribute in the central mechanism of fever generation. ⋯ In contrast, microinjection of the EP1 agonist iloprost induced a very small increase in VO2 but did not have significant influences on the heart rate and Tc, whereas its antagonist, AH6809, did not affect the PGE2-induced responses. Microinjection of the EP2 agonist butaprost had no effects on the VO2, heart rate, and Tc. The results suggest that the EP3 and EP4 receptor subtypes are both involved in the fever generated by PGE2 in the rvmPOA.
-
Age-related testosterone depletion in men is a risk factor for Alzheimer's disease (AD). How testosterone modulates AD risk remains to be fully elucidated, although regulation of tau phosphorylation has been suggested as a contributing protective action. To investigate the relationship between testosterone and tau phosphorylation, we first evaluated the effect of androgen status on tau phosphorylation in 3xTg-AD mice. ⋯ Additional experiments demonstrated androgen-induced changes in Akt, GSK3β and tau phosphorylation in AR-expressing PC12 cells but not in AR-negative PC12 cells. Together, these results suggest an AR-dependent pathway involving PI3K-Akt-GSK3β signaling through which androgens can reduce tau phosphorylation. These findings identify an additional protective mechanism of androgens that can improve neural health and inhibit development of AD.
-
Mild cognitive impairment occurs in rats during the early remodeling phase of myocardial infarction.
Cognitive impairment is a common health problem among people with heart failure (HF). Increases in oxidative stress, brain inflammation, and microglial hyperactivity have been reported in preclinical models of myocardial infarction (MI)-induced HF. We tested the hypothesis that oxidative stress, brain inflammation, mitochondrial dysfunction, and cell death participate in cognitive impairment in the early remodeling phase of MI. ⋯ However, brain inflammation and AD proteins did not change. In conclusion, during the early remodeling phase of MI, a high level of oxidative stress appears to be a major contributor of cellular damage which is associated with mild cognitive impairment. However, the severity of MI, as evidenced by the %LVEF, was not associated with the degree of cognitive impairment.
-
Sepsis-associated encephalopathy (SAE) has close association with long-term cognitive deficits, resulting in increased mortality. The mechanism of SAE is complicated, including excessive microglial activation and neuroinflammation. Cannabinoid type 2 receptor (CB2R) has been proved to be effective in neuronal protection and survival promotion. ⋯ Conclusion from these results, we conclude that CLP could induce microglia hyperactivation and neuronal pyroptosis, aggravating brain tissue destruction and cognitive dysfunction. The CB2R-specific agonist HU308 could have protective effects against SAE by inhibiting microglia activity and neuronal pyroptosis. This study provides a new therapeutic option for the treatment of SAE.