Neuroscience
-
The mechanisms underlying esketamine's therapeutic effects remain elusive. The study aimed to explore the impact of single esketamine treatment on LPS-induced adolescent depressive-like behaviors and the role of Nrf2 regulated neuroinflammatory response in esketamine-produced rapid antidepressant efficacy. ⋯ Esketamine treatment exerts rapid antidepressant effects and attenuates neuroinflammation in LPS-induced adolescent depressive-like behaviors, potentially through the activation of Nrf2-mediated anti-inflammatory signaling.
-
We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences. ⋯ Lphn3 KOs displayed increased DA half-life in the mPFC compared with Lphn3 WT rats, an indication of decreased DAT reuptake, with no differences in the NAcc. DAT blockade by nomifensine had a similar effect on DA release in the NAcc of SHRs and WKYs, but increased DA release in the NAcc of Lphn3 KOs to a greater extent than in WTs. These results suggest that the efficacy of pharmacotherapies used to treat externalizing disorders such as ADHD and/or SUD, likely differ between SHRs and Lphn3 KO rats.
-
Corticosteroid signaling plays a critical role in modulating the neural systems underlying reward and addiction, but the specific contributions of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the medial prefrontal cortex (mPFC) to opioid reward and dopaminergic plasticity remain unclear. Here, we investigated the effects of intra-mPFC injection of corticosteroid receptor ligand (corticosterone; CORT), glucocorticoid receptor antagonist (RU38486; RU), and mineralocorticoid receptor antagonist (spironolactone; SP) on morphine-induced conditioned place preference (CPP) and dopamine transporter (DAT) expression in the mPFC. Adult male Wistar rats received intra-mPFC injections of CORT, RU, SP, or their respective vehicles prior to morphine CPP conditioning. ⋯ These findings demonstrate that corticosteroid receptor signaling within the mPFC modulates the rewarding properties of morphine and morphine-induced dopaminergic plasticity. This preclinical study suggests that targeting GRs and MRs in the mPFC could be a possible therapeutic approach for treating opioid addiction. By targeting these receptors, it may be possible to reduce opioid reward and counteract the neuroadaptations in dopamine systems associated with addiction.
-
Neurodegenerative disorders (NDDs) have been prevalent for more than a decade, and the number of individuals affected per year has increased exponentially. Among these NDDs, Alzheimer's disease, which causes extreme cognitive impairment, and Parkinson's disease, characterized by impairments in motor activity, are the most prevalent. While few treatments are available for clinical practice, they have minimal effects on reversing the neurodegeneration associated with these debilitating diseases. ⋯ The potential CRMs discussed in this review are quercetin, chrysin, astragalin, apigenin, curcumin, epigallocatechin-3-gallate, and NAD+ precursors. This review aims to provide an overview of these CRMs' effectiveness in preventing neurodegenerative disorders associated with aging. Moreover, we highlight the clinical relevance of these compounds by discussing in detail the results of clinical trials on them.
-
Surgery endangers the integrity of the body through a continuous stream of noxious stimuli. General anesthesia helps patients cope with the surgery situation. In the first part of our literature review, we present our new knowledge about nociception as described by Sherrington. ⋯ Maintaining the unconscious state created by anesthetics during surgery is only possible by continuously counteracting nociception. Finally, we present the role of the opioid receptor system in antinociception. Understanding all these processes can help expand our knowledge about nociception, pain and formation of consciousness.