Neuroscience
-
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. ⋯ Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
-
Review Meta Analysis
The safety and efficacy of stem cell therapy for diabetic peripheral neuropathy in animal studies: A systematic review and meta-analysis.
Diabetic peripheral neuropathy (DPN) is the most common form of diabetic neuropathy, representing 75% of cases and posing a substantial public health challenge. Emerging evidence from animal studies indicates that stem cell therapy holds significant promise as a potential treatment for diabetic neuropathy. Nevertheless, a comprehensive evaluation of the safety and efficacy of stem cell therapy for DPN in animal studies remains outstanding. ⋯ The stem cell subgroup analysis showed that dental pulp stem cells had the greatest effects across all parameters, while bone marrow mononuclear cells had strong biochemical responses. Stem cell therapy demonstrates promising efficacy in ameliorating neuropathic symptoms in DPN animal models. Human patient studies and targeted treatment procedures for specific neuropathic disorders are advocated to improve therapeutic outcomes.
-
Review Meta Analysis
The safety and efficacy of stem cell therapy for diabetic peripheral neuropathy in animal studies: A systematic review and meta-analysis.
Diabetic peripheral neuropathy (DPN) is the most common form of diabetic neuropathy, representing 75% of cases and posing a substantial public health challenge. Emerging evidence from animal studies indicates that stem cell therapy holds significant promise as a potential treatment for diabetic neuropathy. Nevertheless, a comprehensive evaluation of the safety and efficacy of stem cell therapy for DPN in animal studies remains outstanding. ⋯ The stem cell subgroup analysis showed that dental pulp stem cells had the greatest effects across all parameters, while bone marrow mononuclear cells had strong biochemical responses. Stem cell therapy demonstrates promising efficacy in ameliorating neuropathic symptoms in DPN animal models. Human patient studies and targeted treatment procedures for specific neuropathic disorders are advocated to improve therapeutic outcomes.
-
Bayesian brain theory, a computational framework grounded in the principles of Predictive Processing (PP), proposes a mechanistic account of how beliefs are formed and updated. This theory assumes that the brain encodes a generative model of its environment, made up of probabilistic beliefs organized in networks, from which it generates predictions about future sensory inputs. The difference between predictions and sensory signals produces prediction errors, which are used to update belief networks. In this article, we introduce the fundamental principles of Bayesian brain theory, and show how the brain dynamics of prediction are associated with the generation and evolution of beliefs.
-
Review
Exploring the cellular and molecular basis of nerve growth factor in cerebral ischemia recovery.
Vascular obstruction often causes inadequate oxygen and nutrient supply to the brain. This deficiency results in cerebral ischemic injury, which significantly impairs neurological function. This review aimed to explore the neuroprotective and regenerative effects of nerve growth factor (NGF) in cerebral ischemic injury. ⋯ Moreover, the mechanisms of NGF in the acute and recovery phases, along with the strategies to enhance its therapeutic effects using delivery systems (such as intranasal administration, nanovesicles, and gene therapy) were also summarized. Although NGF shows great potential for clinical application, its delivery efficiency and long-term safety still need more research and improvements. Future research should focus on exploring the specific action mechanism of NGF, optimizing the delivery strategy, and evaluating its long-term efficacy and safety to facilitate its clinical transformation in cerebral ischemic stroke.