Neuroscience
-
In the face of inevitable declines in alertness and fatigue resulting from sleep deprivation, effective countermeasures are essential for maintaining performance. External trigeminal nerve stimulation (eTNS) presents a potential avenue for regulating alertness by activating the locus coeruleus and reticular activating system. ⋯ These findings suggested that 120 Hz eTNS stimulation might induce a relaxing effect, and thereby alleviate fatigue while preserving alertness and cognitive performance.
-
This study investigates the neural and physiological mechanisms underlying External Referent Decision Awareness (ERDA) within organizational contexts, focusing on hierarchical roles (Head, Peer, Staff). Twenty-two professionals participated, and electroencephalographic (EEG frequency band: Delta, Theta, Alpha, Beta, Gamma) and autonomic indices (skin conductance and cardiovascular indices) were recorded, while personality traits and decision-making styles were assessed. Results revealed higher Delta and Theta activation in the left temporo-parietal junction (TPJ) during Peer-related decisions, reflecting increased social cognition and ambiguity regulation in those contexts. ⋯ The findings revealed a significant negative correlation between avoidant decision-making styles and the neural and behavioral evaluations of leader decisions, suggesting reduced engagement of neurocognitive systems involved in reward processing and evaluative judgment in individuals with a tendency to avoid decision-making. Additionally, higher extraversion correlated with more favorable evaluations of decisions made by Staff, potentially indicating greater activation in neural circuits associated with social reward and group dynamics. In conclusion, these findings suggest that neural activity and personality traits interact to shape hierarchical decision-making awareness, highlighting the need for tailored leadership and decision-making strategies in organizations.
-
Corticosteroid signaling plays a critical role in modulating the neural systems underlying reward and addiction, but the specific contributions of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the medial prefrontal cortex (mPFC) to opioid reward and dopaminergic plasticity remain unclear. Here, we investigated the effects of intra-mPFC injection of corticosteroid receptor ligand (corticosterone; CORT), glucocorticoid receptor antagonist (RU38486; RU), and mineralocorticoid receptor antagonist (spironolactone; SP) on morphine-induced conditioned place preference (CPP) and dopamine transporter (DAT) expression in the mPFC. Adult male Wistar rats received intra-mPFC injections of CORT, RU, SP, or their respective vehicles prior to morphine CPP conditioning. ⋯ These findings demonstrate that corticosteroid receptor signaling within the mPFC modulates the rewarding properties of morphine and morphine-induced dopaminergic plasticity. This preclinical study suggests that targeting GRs and MRs in the mPFC could be a possible therapeutic approach for treating opioid addiction. By targeting these receptors, it may be possible to reduce opioid reward and counteract the neuroadaptations in dopamine systems associated with addiction.
-
Acute peripheral vestibular dysfunction is associated with a variety of postural and balance disturbances. Vestibular rehabilitation training (VRT) is widely acknowledged as an effective intervention for promoting vestibular compensation. Nevertheless, the broader implementation of early VRT is hindered by an incomplete understanding of its neurobiological mechanisms. ⋯ Our findings suggest that VRT facilitates the recovery of postural motor deficits during vestibular compensation, likely mediated by cell proliferation and glial responses, particularly the proliferation of microglia, in the MVN. Furthermore, we demonstrate that ultra-early rehabilitation training yields greater benefits for the long-term recovery of dynamic deficits following UVN. These results carry significant implications for the clinical implementation of early VRT in patients experiencing acute peripheral vestibular dysfunction.