Neuroscience
-
Respiratory muscle paralysis due to trauma or neurodegenerative diseases can have devastating consequences. Only a few studies have investigated the reconstruction of motor function in denervated diaphragms caused by such conditions. Here, we studied the efficacy of transplanting E14 embryonic spinal motor neurons (SMNs) into peripheral nerve grafts for functionally reconstructing a denervated diaphragm in a rat model. ⋯ The SMNs transplanted into the peripheral nerve grafts formed a structure similar to the spinal cord, and the neuromuscular junction of the denervated diaphragm was reinnervated. These findings suggest the establishment of an ectopic motor neuron pool in the peripheral nerve graft. Free peripheral intra-nerve SMN transplantation in combination with NMES, which can be applied for diaphragmatic pacing, offers novel insights into the development of neuroregenerative therapies for treating life-threatening and intractable respiratory muscle paralysis caused by severe nerve damage and degenerative diseases.
-
Conditioned taste aversion (CTA) is a robust associative learning; liquid deprivation during this conditioning allows researchers to obtain readable measures of associative learning. Recent research suggests that thirst could be a crucial motivator that modulates conditioning and memory extinction processes, highlighting the importance of the body's internal state during learning. Furthermore, the histaminergic system is one of the major modulatory systems controlling several behavioral and neurobiological functions, such as feeding, water intake, and nociception. ⋯ According to our findings, the degree of liquid satiety differentially affected taste-aversive memory formation, and H3 histamine receptors were more involved under water deprivation conditions during acquisition. However, these receptors modulated the strength of aversive conditioning by altering the rate of aversive memory extinction in the absence of deprivation. In conclusion, histaminergic activity in the IC may influence taste memory dynamics through different mechanisms depending on the degree of liquid satiety or deprivation during conditioning.
-
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. ⋯ This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
-
The aim of this study was to assess the potential causal relationship between neuroticism and 12 neuroticism items with intracranial aneurysms (IAs) and aneurysmal subarachnoid hemorrhage (aSAH) using a two-sample Mendelian randomization (MR) approach. ⋯ Our Mendelian randomization analysis demonstrated genetic causality between neuroticism and neuroticism items with intracranial aneurysms, aneurysmal subarachnoid hemorrhage, and unruptured intracranial aneurysms, and further studies are needed to confirm these results and explore potential mechanisms of action.
-
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease worldwide, which worsens with advancing age. It is a common movement disorder and is often associated with several vascular diseases with decreased stroke frequency. Circulating platelets substantially regulate vascular complications, including stroke, and share striking similarities with PD neurons. ⋯ Phase-contrast and confocal microscopic studies further verified the results from the above experiments. Our findings showed that 6-OHDA treatment significantly inhibited thrombin (a platelet agonist)-induced functions, including adhesion, activation, aggregation, secretion, and clot retraction in human-washed platelets. In summary, this research provides pioneering evidence that 6-OHDA induces abnormal platelet functions, shedding light on the previously unexplored processes by which 6-OHDA affects platelet activity.