Neuroscience
-
The aim of this study was to investigate the molecular mechanism of exosomal miR-219-5p derived from bone marrow mesenchymal stem cells (BMSCs) in the treatment of spinal cord injury (SCI). ⋯ miR-219-5p in BMSC-derived exosomes can repair the injured spinal cord. In addition, miR-219-5p alleviates ferroptosis in neuronal cells induced by SCI through the UBE2Z/NRF2 pathway.
-
The presubiculum is part of the parahippocampal cortex and plays a fundamental role for orientation in space. Many principal neurons of the presubiculum signal head direction, and show persistent firing when the head of an animal is oriented in a specific preferred direction. GABAergic neurons of the presubiculum control the timing, sensitivity and selectivity of head directional signals from the anterior thalamic nuclei. ⋯ Three groups emerged from the unsupervised cluster analysis of their electrophysiological properties. We demonstrate a frequency dependent recruitment of VIP cells by thalamic afferences and facilitating synaptic input dynamics. Our data provide initial insight into the contribution of VIP interneurons for the integration of thalamic head direction information in the presubiculum.
-
The role of adenosine receptors in fascial manipulation-induced analgesia has not yet been investigated. The purpose of this study was to evaluate the involvement of the adenosine A1 receptor (A1R) in the antihyperalgesic effect of plantar fascia manipulation (PFM), specifically in mice with peripheral inflammation. Mice injected with Complete Freund's Adjuvant (CFA) underwent behavioral, i.e. mechanical hyperalgesia and edema. ⋯ In addition, i.pl. and i.t. administrations of DPCPX blocked the antihyperalgesia caused by PFM. These observations indicate that adenosine receptors mediate the antihyperalgesic effect of PFM. Caffeine's inhibition of PFM-induced antihyperalgesia suggests that a more precise understanding of how fascia-manipulation and caffeine interact is warranted.
-
Alzheimer's disease (AD) is one of the most progressive and prevalent types of neurodegenerative diseases in the aging population (aged >65 years) and is considered a major factor for dementia, affecting 55 million people worldwide. In the current scenario, drug-based therapies have been employed for the treatment of Alzheimer's disease but are only able to provide symptomatic relief to patients rather than a permanent solution from Alzheimer's. Recent advancements in stem cell research unlock new horizons for developing effective and highly potential therapeutic approaches due to their self-renewal, self-replicating, regenerative, and high differentiation capabilities. ⋯ They have been seen to substantially promote neurogenesis, synaptogenesis by secreting neurotrophic growth factors, as well as in ameliorating the Aβ and tau-mediated toxicity. This review covers the pathophysiology of AD, new medications, and therapies. Further, it will focus on the advancements and benefits of Mesenchymal Stem Cell therapies, their administration methods, clinical trials concerning AD progression, along with their future prospective.