Neuroscience
-
Neurodegenerative diseases (ND) are complex diseases of still unknown etiology. Lately, long non-coding RNAs (lncRNAs) have become increasingly popular and implicated in several pathologies as they have several roles and appear to be involved in all biological processes such as cell signaling and cycle control as well as translation and transcription. MEG3 is one of these and acts by binding proteins or directly or competitively binding miRNAs. ⋯ This review examines the current state of knowledge concerning the level of expression and the regulatory function of MEG3 in relation to several NDs. In addition, we examined the relation of MEG3 with neurotrophic factors such as Tumor growth factor β (TGFβ) and its possible mechanism of action. A comprehensive and in-depth analysis of the role of MEG3 in ND could give a clearer picture about the initiation of the process of neuronal death and help develop an alternative therapy that targets MEG3.
-
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. ⋯ Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
-
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. ⋯ This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
-
Motor variability is an intrinsic feature of human beings that has been associated with the ability for learning and adaptation to specific tasks. The purpose of this review is to examine whether there is a possible direct relationship between individuals' initial variability in their ability for learning and adaptation in motor tasks. Eighteen articles examined the relationship between initial motor variability and the ability for learning or adaptation. ⋯ While in error-based task associations were reported with both greater amount variability and more complexity temporal structure. Nevertheless, bias in initial performance related to the amount of variability was found, so the temporal structure of initial variability seems to be a better indicator of improvement in this type of task. Further research is needed for further research to better understand the potential relationship between initial motor variability and the ability for learning or adaptation in motor tasks.
-
Motor variability is an intrinsic feature of human beings that has been associated with the ability for learning and adaptation to specific tasks. The purpose of this review is to examine whether there is a possible direct relationship between individuals' initial variability in their ability for learning and adaptation in motor tasks. Eighteen articles examined the relationship between initial motor variability and the ability for learning or adaptation. ⋯ While in error-based task associations were reported with both greater amount variability and more complexity temporal structure. Nevertheless, bias in initial performance related to the amount of variability was found, so the temporal structure of initial variability seems to be a better indicator of improvement in this type of task. Further research is needed for further research to better understand the potential relationship between initial motor variability and the ability for learning or adaptation in motor tasks.