Neuroscience
-
Past self-report and cognitive-behavioural studies of the effects of transcranial direct current stimulation (tDCS) targeting the medial prefrontal cortex (mPFC) on semantic self-referential processing (SRP) have yielded mixed results. Meanwhile, electroencephalography (EEG) studies show that alpha oscillation (8-12 Hz) may be involved during both semantic and somatic SRP, although the effect of tDCS on alpha-EEG during SRP remains unknown. ⋯ Our results suggest that while mPFC-tDCS may be insufficient to alter immediate subjective experience during SRP, mPFC-tDCS may modulate the power and functional connectivity of the brain's alpha oscillations during somatic SRP. Future research directions are discussed.
-
The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. ⋯ The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
-
Elevated neutrophil counts and decreased albumin levels have been linked to an unfavorable prognosis in acute cerebral infarction (ACI). The objective of this study is to explore the correlation between the neutrophil-to-albumin ratio (NAR) and the early neurological improvement (ENI) of ACI patients following intravenous thrombolysis (IVT). ACI patients who underwent IVT between June 2019 and June 2023 were enrolled. ⋯ The optimal cutoff for predicting ENI was determined as a NAR level of 10.20, with sensitivity and specificity values of 73.6 % and 60.9 %. NAR levels are associated with ENI in ACI patients after IVT. The decreased levels of NAR indicate an increased likelihood of post-thrombolysis ENI in ACI patients.
-
It is increasingly evident that structural and functional changes in brain regions associated with obsessive-compulsive disorder (OCD) are often related to the development of the disease. However, limited research has been conducted on how the progression of OCD may lead to an imbalance between goal-directed and habit-learning systems. This study employs resting-state functional imaging to examine the relationship between illness duration and abnormal brain function in goal-directed/habitual-learning systems. ⋯ Additionally, abnormal brain activity is associated with illness duration, and the abnormalities observed in goal-directed regions are more effective in distinguishing different courses of OCD patients. Patients with different durations of OCD have functional abnormalities in the goal-directed and habitual-learning brain regions. There are differences in the degree of abnormality in different brain regions, and these abnormalities may disrupt the balance between goal-directed and habitual-learning systems, leading to increasing reliance on repetitive behaviors.
-
Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (Tau-P) in the brain. Aβ enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aβ is derived from the amyloid precursor protein (APP). Cleavage of APP by β-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1). ⋯ The increased release of GPC1-derived HS may interfere with Aβ formation and/or Aβ interaction with tau.