Neuroscience
-
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. ⋯ Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
-
Review
Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders.
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. ⋯ The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
-
Mesenchymal stromal cells (MSCs) hold therapeutic potential for neurological disorders, but their impact on neuronal activity remains unclear. We investigated the effects of SB623 cells (Notch-1 intracellular domain-transfected MSCs) and parental MSCs on human induced pluripotent stem cell (iPSC)-derived neurons using multi-electrode arrays. SB623 cells significantly increased neuronal activity and oscillation in a dose-dependent manner, surpassing astrocytes in promoting network bursts. ⋯ We confirmed this by finding high glutamate levels in SB623 cell conditioned medium, which were reduced by glutaminase inhibition. Glutamate release was further implicated by the reduced excitability in co-cultures with astrocytes, known glutamate scavengers. Our findings reveal a novel mechanism for MSCs: promoting neuronal activity and network formation through tonic glutamate release, with potential implications for MSC-based therapies.
-
Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. ⋯ Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.
-
Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. ⋯ Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.