Psychopharmacology
-
The prefrontal cortex (PFC) receives multiple cortical and subcortical afferents that regulate higher order cognitive functions, many of which emerge late in adolescence. However, it remains unclear how these afferents influence PFC processing, especially in light of the protracted, late adolescent maturation of prefrontal GABAergic function. Here we investigated the role of PFC GABAergic transmission in regulating plasticity elicited from the ventral hippocampus and basolateral amygdala, and how such modulation undergoes functional changes during adolescence in rats. ⋯ The development of ventral hippocampal-dependent PFC LTD is contingent upon the recruitment of local prefrontal GABAergic transmission during adolescence whereas plasticity elicited from the basolateral amygdala is not. Thus, different mechanisms contribute to the refinement of prefrontal plasticity during adolescence as inputs from these two regions are critical for shaping PFC functions.
-
Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats. ⋯ DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2(High) receptors.
-
Carrageenan-induced hyperalgesia is a widely used pain model in rodents. However, characteristics of carrageenan-induced hyperalgesia and effects of analgesic drugs under these conditions are unknown in nonhuman primates. ⋯ Using two different pain modalities in nonhuman primates, effectiveness of clinically available analgesics like fentanyl, ketorolac and naproxen was distinguished and their efficacies and potencies were compared with the selective KOP, DOP, and NOP agonists. The opioid-related ligands displayed differential pharmacological properties in regulating hyperalgesia and acute nociception in the same subjects. Such preclinical primate models can be used to investigate novel analgesic agents.
-
As enhanced corticotropin-releasing factor (CRF) transmission is associated with induction of sensorimotor gating deficits, CRF₁ receptor antagonists may reverse disrupted prepulse inhibition (PPI), an operational measure of sensorimotor gating. ⋯ The inability of CRF₁ receptor antagonists to block pharmacological disruption of sensorimotor gating suggests that the involvement of CRF₁ receptors in the modulation of dopaminergic and glutamatergic neurotransmission relevant for sensory gating is limited. Furthermore, the alterations observed in CRFtg mice support the notion that long-term elevated central CRF levels induce changes in these neurotransmitter systems.
-
Ethanol is commonly used and abused during adolescence. Although adolescents display differential behavioral responses to ethanol, the mechanisms by which this occurs are not known. The protein kinase C (PKC) pathway has been implicated in mediating many ethanol-related effects in adults, as well as gamma-aminobutyric acid (GABA(A)) receptor regulation. ⋯ These data indicate that PKC isoforms are variably regulated during adolescence and may contribute to adolescent ethanol-related behavior. Furthermore, age-related differences in the cPLA2/AA pathway may contribute to ethanol's age-related effects on novel and atypical PKC isoform expression and behavior.