Journal of molecular and cellular cardiology
-
J. Mol. Cell. Cardiol. · Nov 2021
ReviewRelevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system.
N6-methyladenosine (m6A) is the most abundant and well-studied internal modification of messenger RNAs among the various RNA modifications in eukaryotic cells. Moreover, it is increasingly recognized to regulate non-coding RNAs. The dynamic and reversible nature of m6A is ensured by the precise and coordinated activity of specific proteins able to insert ("write"), bind ("read") or remove ("erase") the m6A modification from coding and non-coding RNA molecules. ⋯ In the present review we summarise and discuss the major functions played by m6A RNA methylation and its components particularly referring to the cardiovascular system. We present the methods used to study m6A and the most abundantly methylated RNA molecules. Finally, we highlight the possible involvement of the m6A mark in cardiovascular disease as well as the need for further studies to better describe the mechanisms of action and the potential therapeutic role of this RNA modification.
-
J. Mol. Cell. Cardiol. · Sep 2020
ReviewCoagulopathy in COVID-19: Focus on vascular thrombotic events.
SARS-CoV-2 causes a phenotype of pneumonia with diverse manifestation, which is termed as coronavirus disease 2019 (COVID-19). An impressive high transmission rate allows COVID-19 conferring enormous challenge for clinicians worldwide, and developing to a pandemic level. Combined with a series of complications, a part of COVID-19 patients progress into severe cases, which critically contributes to the risk of fatality. ⋯ Ongoing efforts made to develop promising therapies provide several potential strategies for hypercoagulability in COVID-19. In this review, we introduce the clinical features of coagulation and the increased vascular thrombotic risk conferred by coagulopathy according to present reports about COVID-19. The potential underlying mechanisms and emerging therapeutic avenues are discussed, emphasizing an urgent need for effective interventions.
-
J. Mol. Cell. Cardiol. · Aug 2020
Review Case ReportsCardiac injuries in coronavirus disease 2019 (COVID-19).
As the coronavirus disease 2019 (COVID-19) epidemic worsens, this global pandemic is impacting more than 200 countries/regions and more than 4,500,000 confirmed cases worldwide. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which might attack not only the respiratory system, but also the other important organs, including the heart. ⋯ Meanwhile, elevated troponin levels were frequently observed in COVID-19 cases. Besides the comprehensive treatments for COVID-19, as a cardiologist, we should also remain vigilant about the cardiac injuries, especially those with severe emergent cardiovascular symptoms.
-
J. Mol. Cell. Cardiol. · Jul 2020
ReviewSARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications.
The current COVID-19 pandemic started several months ago and is still exponentially growing in most parts of the world - this is the most recent and alarming update. COVID-19 requires the collaboration of nearly 200 countries to curb the spread of SARS-CoV-2 while gaining time to explore and improve treatment options especially for cardiovascular disease (CVD) and immunocompromised patients, who appear to be at high-risk to die from cardiopulmonary failure. Currently unanswered questions are why elderly people, particularly those with pre-existing comorbidities seem to exhibit higher mortality rates after SARS-CoV-2 infection and whether intensive care becomes indispensable for these patients to prevent multi-organ failure and sudden death. ⋯ This, and the fact that SARS-CoV-2 hijacks ACE2 for cell-entry, have spurred controversial discussions on the role of ACE2 in COVID-19 patients. In this review, we highlight the state-of-the-art knowledge on SARS-CoV-2-dependent mechanisms and the potential interaction with ACE2 expression and cell surface localization. We aim to provide a list of potential treatment options and a better understanding of why CVD is a high risk factor for COVID-19 susceptibility and further discuss the acute as well as long-term cardiac consequences.
-
J. Mol. Cell. Cardiol. · Dec 2016
ReviewRole of protein tyrosine phosphatase 1B in cardiovascular diseases.
Protein Tyrosine Phosphatase 1B (PTP1B) is mostly involved in negative regulation of signaling mediated by Tyrosine Kinase Receptors, especially the insulin and leptin receptors. This enzyme thus plays a major role in the development of diseases associated with insulin resistance, such as obesity and diabetes. PTP1B inhibition is currently considered as an attractive treatment of insulin resistance and associated metabolic disorders. ⋯ Finally, PTP1B inhibition also reduces cardiac dysfunction, but also systemic inflammation and mortality in experimental models of septic shock, and thus may also constitute a new treatment of this disease. Altogether, accumulating preclinical evidence suggests that PTP1B represents an interesting molecular target to treat both cardiovascular and metabolic diseases, which often share the same risk factors. This concept now deserves to be tested in clinical studies that should soon be possible with the current development of selective PTP1B inhibitors.