The Journal of physiology
-
The Journal of physiology · Jan 1986
Excitation of neurones in the rat paraventricular nucleus in vitro by vasopressin and oxytocin.
Extracellular recordings were made from ninety-seven spontaneously firing cells in the paraventricular nucleus (p.v.n.) of the rat hypothalamic slice preparation. The spontaneously firing cells tested fired at 0.1-8 spikes/s but the majority showed a slow irregular firing pattern. The average firing rate of all ninety-seven cells was 2.2 +/- 0.2 spikes/s (mean +/- S. ⋯ After blocking synaptic transmission with a low Ca2+ and high Mg2+ medium, all tested cells (AVP, n = 15; OXT, n = 14) which had responded to applications of AVP or OXT in normal medium still showed responses to the peptides, although the effect was less marked in half the cells. However, in the absence of synaptic transmission two cells showed unimpaired responses to one of the peptides but greatly depressed responses to the other. The V1-receptor antagonist [1-(beta-mercapto-, beta-cyclopentamethylenepropionic acid)], 8-D-arginine-vasopressin (d(CH2)5DAVP) or V1/V2-receptor antagonist [1-(beta-mercapto-, beta-cyclopentamethylenepropionic acid), 2-D-tyrosine,4-valine]arginine-vasopressin (d(CH2)5D-TyrVAVP) completely or partly blocked the AVP-induced responses, while the V2-receptor agonist 1-deamino-8-D-arginine-vasopressin (dDAVP) did not influence the spontaneous discharges of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)