The Journal of physiology
-
The Journal of physiology · Mar 2007
ReviewBrain-computer interfaces: communication and restoration of movement in paralysis.
The review describes the status of brain-computer or brain-machine interface research. We focus on non-invasive brain-computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked-in patients. ⋯ Invasive BMIs based on neuronal spike patterns, local field potentials or electrocorticogram may constitute the strategy of choice in severe cases of stroke and spinal cord paralysis. Future directions of BCI research should include the regulation of brain metabolism and blood flow and electrical and magnetic stimulation of the human brain (invasive and non-invasive). A series of studies using BOLD response regulation with functional magnetic resonance imaging (fMRI) and near infrared spectroscopy demonstrated a tight correlation between voluntary changes in brain metabolism and behaviour.
-
The Journal of physiology · Mar 2007
Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy.
Hyperactivity of spinal dorsal horn neurons plays an important role in the development of diabetic neuropathic pain. However, little is known as to whether synaptic input to spinal dorsal horn neurons is altered in diabetic neuropathy. Also, the function of GABAB receptors in the control of synaptic input to dorsal horn neurons in diabetes remains poorly understood. ⋯ However, the inhibitory effect of baclofen on GABAergic and glycinergic spontaneous IPSCs and mIPSCs was not significantly different in the two groups. These findings suggest that increased glutamatergic input from primary afferents to dorsal horn neurons may contribute to synaptic plasticity and central sensitization in diabetic neuropathic pain. Furthermore, the function of presynaptic GABAB receptors at primary afferent terminals, but not that on GABAergic and glycinergic interneurons, in the spinal cord is reduced in diabetic neuropathy.