The International journal of artificial organs
-
Review
Artificial placenta--lung assist devices for term and preterm newborns with respiratory failure.
Respiratory insufficiency is a major cause of neonatal mortality and long-term morbidity, especially in very low birth weight infants. Today, non-invasive and mechanical ventilation are commonly accepted procedures to provide respiratory support to newborns, but they can reach their limit of efficacy. ⋯ However, there has been a recent renaissance of this concept, including developments of its major components like the oxygenator, vascular access via umbilical vessels, flow control, as well as methods to achieve hemocompatibility in extracorporeal circuits. This paper gives a review of past and current development, animal experiments and human case studies of artificial placenta technology.
-
Extracorporeal cytokine removal may be desirable. We sought to assess extracorporeal blood purification (EBP) techniques for cytokine removal in experimental animal studies. ⋯ Experimental animal studies indicate that HVHF (especially with HCO filters) and plasmafiltration have the potential to achieve appreciable IL-6 and IL-10 clearances. However, only PF can remove TNF-alpha reliably.
-
Candida species have two distinct lifestyles: planktonic, and surface-attached communities called biofilms. Mature C. albicans biofilms show a complex three-dimensional architecture with extensive spatial heterogeneity, and consist of a dense network of yeast, hyphae, and pseudohyphae encased within a matrix of exopolymeric material. Several key processes are likely to play vital roles at the different stages of biofilm development, such as cell-substrate and cell-cell adherence, hyphal development, and quorum sensing. ⋯ The traditional approach to the management of these infections has been to explant the affected device. There is a strong medical but also economical motivation for the development of novel anti-fungal biofilm strategies due to the constantly increasing resistance of Candida biofilms to conventional antifungals, and the high mortality caused by related infections. A better description of the extent and role of yeast in biofilms may be critical for developing novel therapeutic strategies in the clinical setting.
-
Review
Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure.
Neuropsychological injury after cardiopulmonary bypass (CPB) is one of the most serious and costly complications arising from the procedure. Gaseous microemboli (GME) have long been implicated as one of the principal causes. There are two major sources of GME: surgical and manual manipulation of the heart and arteries; and the components of the extracorporeal circuit, including the type of pump, different perfusion modes, the design of the oxygenator and reservoir, and the use of vacuum assisted venous drainage (VAVD), all of which have a great impact on the delivery of existing GME to the patients. ⋯ Improvements in perfusion equipment and in perfusion and surgical techniques have led to a dramatic reduction in the occurrence of GME during cardiac surgery. Although the clinical relevance of cerebral air embolization in causing neurological damage is unclear, every single person involved in perfusion and surgical technology should be aware of the risk of embolization and strictly regulate clinical behavior. Related research should also be done to improve the design of circuit components and clinical practice with a view to eliminating air bubbles during CPB procedure.
-
Autologous tissue transfer, allografts and prosthetic replacements have so far failed to offer functional solutions for the treatment of long circumferential tracheal defects. Because of the shortcomings related with these strategies, interest has turned increasingly to the field of tissue engineering which applies the principles of engineering and life sciences in an effort to develop in vitro biological substitutes able to restore, maintain, or improve tissue and organ function. The advances in this field during the past decade have thus provided a new attractive approach toward the concept of functional substitutes and may represent an alternative to the shortage of suitable grafts for reconstructive airway surgery. This article gives an overview of the tissue engineering approach and of the encouraging strategies attempted so far in trachea regeneration.