Neurosurgery
-
Large format (i.e., >25 cm) cranioplasty is a challenging procedure not only from a cosmesis standpoint, but also in terms of ensuring that the patient's brain will be well-protected from direct trauma. Until recently, when a patient's own cranial flap was unavailable, these goals were unattainable. Recent advances in implant computer-aided design and 3-dimensional (3-D) printing are leveraging other advances in regenerative medicine. ⋯ Implants may be cultured in a bioreactor along with recombinant growth factors to produce implants coated with bone progenitor cells and extracellular matrix that appear to the body as a graft, albeit a tissue-engineered graft. The growth factors would be left behind in the bioreactor and the graft would resorb as new host bone invades the space and is remodeled into strong bone. As we describe in this review, such advancements will lead to optimal replacement of cranial defects that are both patient-specific and regenerative.
-
The current neurosurgical goal for patients with malignant gliomas is maximal safe resection of the contrast-enhancing tumor. However, a complete resection of the contrast-enhancing tumor is achieved only in a minority of patients. One reason for this limitation is the difficulty in distinguishing viable tumor from normal adjacent brain during surgery at the tumor margin using conventional white-light microscopy. ⋯ Consequently, 5-ALA FGS has become an indispensable surgical technique and standard of care at many neurosurgical departments around the world. We conducted an extensive literature review concerning the surgical benefit of using 5-ALA for FGS of malignant gliomas. According to the literature, there are a number of reasons for the neurosurgeon to perform 5-ALA FGS, which will be discussed in detail in the current review.