Pathology, research and practice
-
Pathol. Res. Pract. · Feb 2020
Molecular diagnostic characteristics based on the next generation sequencing in lung cancer and its relationship with the expression of PD-L1.
Next generation sequencing (NGS) is a massively parallel sequencing technique that can be used to detect many forms of DNA variation, including point mutations, small fragment insertion deletions, gene recombination, and copy number variations. It can simultaneously analyze multiple genes and mutations, quantitatively detect gene mutation rate, and provide comprehensive information for clinicians. More and more lung cancer patients have benefited from studies on programmed death-1igand l (PD-L1) and immunocheckpoint inhibitors. The relationship between gene mutation and PD-L1 is also a focus of current research. Therefore, we collected a large number of cases to describe the molecular diagnostic characteristics of NGS in lung cancer and the relationship between NGS and PD-L1 expression. ⋯ In the 15-gene panel, in addition to EGFR, ALK and ROS1, MET, KRAS, PIK3CA, KIT, ESR1 and NRAS also had their own characteristics in sex, age, smoking history, histopathology, sample type and PD-L1, showing different clinicopathological tendencies. Understanding this information can help us optimize stratified lung cancer patients. Furthermore, it provides patients with a variety of diagnostic needs and a large number of unique clinical data worthy of clinical recognition.