Trends in neurosciences
-
Trends in neurosciences · Jun 2020
ReviewSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the Central Nervous System.
Emerging evidence indicates that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), can cause neurological complications. We provide a brief overview of these recent observations and discuss some of their possible implications. In particular, given the global dimension of the current pandemic, we highlight the need to consider the possible long-term impact of COVID-19, potentially including neurological and neurodegenerative disorders.
-
Tissue injury can initiate bidirectional signaling between neurons, glia, and immune cells that creates and amplifies pain. While the ability for neurotransmitters, neuropeptides, and cytokines to initiate and maintain pain has been extensively studied, recent work has identified a key role for reactive oxygen and nitrogen species (ROS/RNS; nitroxidative species), including superoxide, peroxynitrite, and hydrogen peroxide. In this review we describe how nitroxidative species are generated after tissue injury and the mechanisms by which they enhance neuroexcitability in pain pathways. Finally, we discuss potential therapeutic strategies for normalizing nitroxidative signaling, which may also enhance opioid analgesia, to help to alleviate the enormous burden of pathological pain.
-
The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow.
-
Trends in neurosciences · Mar 2016
ReviewBACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease.
The protease β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is required for the production of the amyloid-β (Aβ) peptide, which is central to the pathogenesis of Alzheimer's disease (AD). Chronic inhibition of this protease may temper amyloid production and cure or prevent AD. However, while BACE1 inhibitors are being pushed forward as drug candidates, a remarkable gap in knowledge on the physiological functions of BACE1 and its close homolog BACE2 becomes apparent. Here we discuss the major discoveries of the past 3 years concerning BACE1 biology and to what extent these could limit the use of BACE1 inhibitors in the clinic.
-
There is accumulating evidence from behavioral, neurophysiological, and neuroimaging studies that the acquisition of motor skills involves both perceptual and motor learning. Perceptual learning alters movements, motor learning, and motor networks of the brain. ⋯ Here, we review studies of both human limb movement and speech that indicate that plasticity in sensory and motor systems is reciprocally linked. Taken together, this points to an approach to motor learning in which perceptual learning and sensory plasticity have a fundamental role.