Hearing research
-
A model of the mammalian auditory-nerve neuron has been developed based on the classical work of Frankenhauser and Huxley [(1964) J. Physiol. 171, 302-315], modified by McNeal [(1976) IEEE Trans. Biomed. ⋯ Finally the results of the model are compared with behavioral data obtained from patients and monkeys implanted with cochlear prostheses. In the companion paper [(1987) Hear. Res. 31, 267-286] predictions of the model are quantitatively compared with single-neuron data from squirrel monkeys.
-
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. ⋯ Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.