Hearing research
-
The origin of the frequency selectivity of neurons in the vertebrate auditory periphery is one of the most important questions in auditory research today. In an attempt to delineate the extent to which structures outside the sensory cells play a role in determining peripheral auditory responses, we measured the mechanical displacement of the basilar membrane and the selectivity of nerve fibres at the same location in the bobtail lizard. These data indicate a contribution to frequency selectivity, the tuning of which resembles a high-pass resonant filter characteristic, arising subsequent to the basilar membrane motion. A comparison of these data with the tuning of auditory-nerve fibres originating from papillar areas in other lizard species without a tectorial membrane, suggests that it is the involvement of the tectorial membrane in a mechanical resonance which increases the frequency selectivity.
-
In previous studies describing the effects of electrically stimulating the olivocochlear bundle, it seems possible that both medial and lateral (MOC and LOC) efferents may have been stimulated. To selectively stimulate MOC efferents, we used an electrode placed at the origin of the MOC efferents in the brainstem (MOC stimulation). For comparison, a stimulating electrode was placed in the fourth ventricle at the decussation of the crossed olivocochlear bundle where both MOC and LOC efferents are present (midline-OCB stimulation). ⋯ These results, taken together with anatomical data in the literature, are consistent with the hypothesis that, in the cat, MOC and midline-OCB stimulation have their effect solely through synapses on outer hair cells. The data are consistent with the hypothesis that the level shifts are produced by MOC efferents acting on outer hair cells to reduce the mechanical stimulus to inner hair cells. It seems likely that some other mechanism is required to produce the plateau depressions, at least for auditory-nerve fibers with high spontaneous rates.
-
In order to increase our understanding of cochlear mechanisms, we measured changes in the rate of spontaneous firing (SR) of single auditory-nerve fibers in response to the stimulation of medial olivocochlear efferents in cats. During the first second of efferent stimulation, SR was depressed by up to 35%, except in one very sensitive animal in which depressions up to 80% were found. With data from this aberrant cat excluded, the SR depression, on the average, increased as auditory-nerve fiber sensitivity increased, increased as the original SR decreased (data were not obtained for SRs less than two spikes/sec), and had a broad maximum at CFs of about 10 kHz. ⋯ The "overshoot" was larger for fibers with lower SRs and for fibers which showed larger "adaptation" in the efferent-induced depression of SR. The data on SR depression during efferent stimulation are consistent with two hypotheses: (1) that the stronger than usual efferent suppression of "spontaneous" rate found in some very sensitive fibers occurs because the "spontaneous" firing was, in part, a response to sound, and (2) that "true spontaneous" firing is reduced by the efferent-induced hyperpolarization of outer hair cells (OHCs) being electrically coupled through the endocochlear potential to inner hair cells (IHCs). It is suggested that (1) the efferent-induced suppression of "true spontaneous" activity is largest at CFs near 10 kHz because this CF region receives the greatest OHC innervation from medial efferents and the efferent-induced change in OHCs is electrically coupled to IHCs, whereas (2) the efferent suppression of responses to sound is largest at lower CFs because the efferent endings on OHCs act to decrease the motion of the basilar membrane and this change is propagated apically from the active efferent synapses on OHCs.