Hearing research
-
We investigated the effects of continuous microstimulation in the cats' posteroventral cochlear nucleus, using chronically implanted activated iridium microelectrodes. We examined 51 electrode sites (39 pulsed sites, and 12 unpulsed sites). Seven hours of continuous stimulation at 500 Hz often produced tissue injury near the tips of the pulsed microelectrodes. ⋯ The damage threshold was not appreciably lower than the stimulation protocol was extended to 35 h (7 h/day for 5 days). In contrast, the threshold for exciting neurons near the microelectrode is approximately 1 nC/phase, as determined by the evoked response recorded in the inferior colliculus. There was little correlation between the severity of the tissue damage and the geometric charge density at the surface of the electrodes, between the damage and amplitude of the cathodic phase of the voltage transient induced across the stimulating electrodes by the stimulus current pulses, or between the damage and the stimulus pulse duration.
-
A systematic study of the encoding properties of 146 auditory nerve fibers in the Tokay gecko (Gekko gecko, L) was conducted with respect to pure tones and two-tone rate suppression. Our aim was a comprehensive understanding of the peripheral encoding of simple tonal stimuli and their representation by temporal synchronization and spike rate codes as a prelude to subsequent studies of more complex signals. Auditory nerve fibers in the Tokay gecko have asymmetrical, V-shaped excitatory tuning curves with best excitatory frequencies that range from 200-5100 Hz and thresholds between 4-35 dB SPL. ⋯ These complimentary representations within a tuning curve raise fundamental issues which need to be addressed in interpreting how more complex, bioacoustic communication signals are represented in the peripheral and central auditory system. And since auditory nerve fibers in the Tokay gecko exhibit tonal sensitivity, selective frequency tuning, and iso-intensity and iso-frequency contours that seem comparable to similar measures in birds and mammals, these issues likely apply to most higher vertebrates in general. The simpler wiring diagram of the reptilian auditory system, coupled with the Tokay gecko's remarkable vocalizations, make this animal a good evolutionary model in which to experimentally explore the encoding of more complex sounds of communicative significance.