Hearing research
-
Comparative Study
Physiology of the young adult Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli.
This study was designed to establish the young adult (3 month) Fischer 344 (F344) rat as a model of inferior colliculus (IC) physiology, providing a baseline for analysis of changes in single unit responses as the animals age and for the study of noise induced hearing loss. The response properties of units localized to the central nucleus of the IC (CIC) and those localized to the external cortex of the IC (ECIC) were compared in order to better characterize differences between these two subnuclei in the processing of simple auditory stimuli. In vivo extracellular single unit recordings were made from IC neurons in ketamine/xylazine anesthetized young adult F344 rats. ⋯ Differences between CIC and ECIC units included a higher percentage of nonmonotonic RIFs and lower percentage of onset temporal response patterns in the CIC than in the ECIC. Some properties which have been previously used as hallmarks for differentiation between CIC and ECIC units, namely broader tuning and longer first spike latencies in the ECIC, did not reach statistical significance in this study. These may reflect species differences and/or the highly variable and largely overlapping sets of responses evident in the large sample size used in this study.
-
Comparative Study
Responses of young and aged Fischer 344 rat inferior colliculus neurons to binaural tonal stimuli.
The inferior colliculus (IC) is one nucleus of the central auditory system which displays age-related changes. Inputs to the IC use primarily the amino acid neurotransmitters glutamate and gamma-aminobutryic acid (GABA). Neurochemical and anatomical studies of the Fischer 344 (F344) rat IC have shown decreases in GABA and GABA receptor levels (see Caspary et al., 1995 for review). ⋯ Although there was some shift in the distribution of binaural RIF shapes with age, it was not statistically significant. The shift included a reduction in the percentage of units classified as E/I (excited by contralateral stimulation/ipsilaterally inhibited during binaural stimulation), but an increase with age in the percentage of units classified as E/f (excited by contralateral stimulation/ further facilitated by the addition of low intensity ipsilateral stimulation, but inhibited by higher intensity ipsilateral stimulation). Despite the role of inhibitory neurotransmission in binaural processing in the IC, age-related neurochemical deficits in the IC do not appear to result in a major deficit in the processing of simple binaural stimuli in F344 rats.