Hearing research
-
Latency, temporal dispersion and input-output characteristics of auditory nerve fiber responses to electrical pulse trains in normal and chronically deafened cat ears were classified and tentatively associated with sites where activity is initiated. Spikes occurred in one or more of four discrete time ranges whose endpoints overlapped partially. A responses had latencies <0.44 ms, exhibited asymptotic temporal dispersion of 8-12 micros and possessed an average dynamic range of 1.2 dB for 200 pulses/s (pps) pulse trains. ⋯ Responses to high-rate stimuli also exhibited discrete latency increases when discharge rates exceeded 300-400 spikes/s. Spike by spike latencies in these cases depended strongly on the discharge history. Implications for high-rate speech processing strategies are discussed.
-
We examined the effect of a neonatal sensorineural hearing loss on the soma area of neurones in the central nucleus of the inferior colliculus (ICC) in adult cats to evaluate the role of auditory experience on neuronal atrophy within the auditory midbrain. Three groups of animals were used: bilaterally deafened, unilaterally deafened and normal hearing controls. ⋯ In contrast, there was no significant difference in mean soma area between normal hearing and unilaterally deafened animals (P0.05) irrespective of whether the ICC examined was ipsi- or contralateral to the deafened ear. These results demonstrate that the reduction in soma area of auditory brainstem neurones reported following a sensorineural hearing loss is also evident at the level of the auditory midbrain.