Hearing research
-
We investigated the effect of pulse duration (PD) and interphase-gap (IPG) on the electrically-evoked auditory brain stem response (EABR) and viiith nerve compound action potential (ECAP) of deafened guinea pigs in order to test the hypothesis that the extent of change in these neural responses is affected by the histological status of the auditory nerve. Fifteen guinea pigs were deafened by co-administration of kanamycin and furosemide. Animals were acutely implanted with an 8-band electrode array at 1, 4 or 12 weeks following deafening. ⋯ Moreover, the current level required to evoke EABR/ECAPs with equal amplitude was lower when current pulses had an IPG of 58 versus 8 micros. Importantly, there was a reduction in the magnitude of this effect with greater neural loss; the reduced efficacy of changing both PD and IPG on these electrically-evoked potentials was statistically correlated with neural survival. These results may provide a tool for investigating the contribution of auditory nerve survival to clinical performance among cochlear implant subjects.
-
Multicenter Study
Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.
To determine the site of excitation on the spiral ganglion cell in response to electrical stimulation similar to that from a cochlear implant, single-fiber responses to electrical stimuli delivered by an electrode positioned in the scala tympani were compared to responses from stimuli delivered by an electrode placed in the internal auditory meatus. The response to intrameatal stimulation provided a control set of data with a known excitation site, the central axon of the spiral ganglion cell. For both intrameatal and scala tympani stimuli, the responses to single-pulse, summation, and refractory stimulus protocols were recorded. ⋯ Single-fiber summation data for both scala tympani and intrameatally stimulated fibers were analyzed with a clustering algorithm. Combining cluster analysis and additional numerical modeling data, it was hypothesized that the scala tympani responses corresponded to central excitation, peripheral excitation adjacent to the cell body, and peripheral excitation at a site distant from the cell body. Fibers stimulated by an intrameatal electrode demonstrated the greatest range of jitter measurements indicating that greater fiber independence may be achieved with intrameatal stimulation.