Hearing research
-
Hair cell regeneration after acoustic trauma has been conclusively documented in birds. Previous studies of aminoglycoside ototoxicity have typically used 5-10 day courses of drug to damage the cochlea and trigger regeneration. This long-term lesion prevented analysis of the early events of regeneration. ⋯ Two-week survivors showed an elevation in hair cell number compared to controls in regions which had sustained damage and immediately adjacent regions. This elevation implies that an overproduction of hair cells might occur as part of the regeneration response. By 5 weeks after damage hair cell numbers approximated controls.
-
The middle latency responses (MLR) to acoustical stimulation (A-MLR) as well as to electrical stimulation (E-MLR) of the inner ear were recorded in pentobarbital-anaesthetised cats. Monopolar and bipolar MLR recordings were performed with electrodes located at different places on the primary auditory cortex (AI). The cochlea was electrically stimulated (ES) through a single round-window electrode or through a multichannel intracochlear implant. ⋯ Parameters of E-MLRs evoked by high-frequency ( > 4 kHz) and low-intensity ES in hearing cats, which produced an electrophonic effect, were similar to parameters of acoustically evoked MLRs. In deafened cats, the properties of responses to extracochlear ES were different from those recorded to acoustical stimulation and they were almost uniform in all cortical places. Variations in thresholds, in latencies and in the slope of the amplitude-intensity functions of the E-MLRs recorded in individual tonotopical cortical places were observed when the auditory nerve was stimulated with different configurations of electrodes through a multichannel intracochlear implant.
-
Nerve-fiber regeneration in the chinchilla cochlea following a traumatic noise exposure was systematically described by Bohne and Harding (1992). However, their study did not determine the origin of the regenerated nerve fibers (RNFs). In the present study, 23 chinchillas were exposed for 12 h to a 0.5 kHz octave band of noise at 120 dB SPL. ⋯ In the AChE-stained cochleas, none of the RNFs were AChE-positive, but normal AChE-positive fibers were found in the undamaged apical turn. A variable number of surviving spiral ganglion cells was present in those regions of Rosenthal's canal that had originally innervated the missing hair cells in the OC wipeouts and remnants. It is concluded that RNFs are not part of the efferent cochlear system and therefore, most likely belong to the afferent system.
-
While recent studies have suggested that electrical stimulation of the auditory nerve at high stimulus rates (e.g., 1000 pulses/s) may lead to an improved detection of the fine temporal components in speech among cochlear implant patients, neurophysiological studies have indicated that such stimulation could place metabolic stress on the auditory nerve, which may lead to neural degeneration. To examine this issue we recorded the electrically evoked auditory brainstem response (EABR) of guinea pigs following acute bipolar intracochlear electrical stimulation using charge-balanced biphasic current pulses at stimulus rates varying from 100 to 1000 pulses/s and stimulus intensities ranging from 0.16 to 1.0 microC/phase. Charge density was held constant (approximately 75 microC cm-2 geom/phase) in those experiments. ⋯ These data suggest that stimulus rate is a major contributor to the observed reduction in excitability of the electrically stimulated auditory nerve. This reduction may be a result of an activity-induced depletion of neural energy resources required to maintain homeostasis. The present findings have implications for the design of safe speech-processing strategies for use in multichannel cochlear implants.
-
In spite of many satisfactory results, the clinical outcome of cochlear implantation is poorly predictable and further insight into the fundamentals of electrical nerve stimulation in this complex geometry is necessary. For this purpose we developed a rotationally symmetric volume conductor model of the implanted cochlea, using the Boundary Element Method (BEM). This configuration mimics the cochlear anatomy more closely than previous, unrolled models. ⋯ The model predicts that the excitation threshold, the spatial selectivity and the dynamic range depend on the exact position of the electrode in the scala tympani. These results are in good agreement with recently published electrical ABR data. It is shown that the use of actively modelled nerve fibres is essential to obtain correct predictions for the biphasic stimuli typically used in cochlear implants and that unrolling the cochlear duct as done in previous models leads to erroneous predictions regarding modiolar stimulation.