Nutrition and cancer
-
Nutrition and cancer · Jan 2002
Long-chain n-3-to-n-6 polyunsaturated fatty acid ratios in breast adipose tissue from women with and without breast cancer.
Animal studies suggest that dietary polyunsaturated fatty acids (PUFAs) of the n-6 class, found in corn and safflower oils, may be precursors of intermediates involved in the development of mammary tumors, whereas long-chain (LC) n-3 PUFAs, found in fish oil, can inhibit these effects. This case-control study was designed to examine the relationship between the PUFA composition of breast adipose tissue and the risk of breast cancer. Using fatty acid levels in breast adipose tissue as a biomarker of past qualitative dietary intake of fatty acids, we examined the hypothesis that breast cancer risk is negatively associated with specific LC n-3 PUFAs (eicosapentaenoic acid and docosahexaenoic acid) and positively associated with n-6 PUFAs (linoleic acid and arachidonic acid). ⋯ There was a trend in the age-adjusted data suggesting that, at a given level of n-6 PUFA, LC n-3 PUFAs (eicosapentaenoic acid and docosahexaenoic acid) may have a protective effect (P = 0.06). A similar inverse relationship was observed with LC n-3-to-n-6 ratio when the data were adjusted for age (P = 0.09). We conclude that total n-6 PUFAs may be contributing to the high risk of breast cancer in the United States and that LC n-3 PUFAs, derived from fish oils, may have a protective effect.
-
Nutrition and cancer · Jan 2000
Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium.
The effects of oral administration of bovine lactoferrin (bLF) and its hydrolysate on the lung colonization by colon 26 carcinoma were investigated. At doses of 100 or 300 mg/kg/day for seven successive days, bLFs demonstrated a significant inhibitory effect on experimental metastasis, which indicated effectiveness before and after tumor implantation. Oral administration of bLFs augmented CD4+, CD8+, and asialoGM1+ cells in the spleen and peripheral blood. ⋯ In the small intestinal epithelium, CD4+ and CD8+ cells were markedly increased, and, simultaneously, enhanced production of interleukin-18 (IL-18) was confirmed in the intestinal epithelial cells. In this model, intravenous injection of murine IL-18 showed significant inhibition of the lung colonization by colon 26 carcinoma. These results suggested that inhibition of experimental metastasis by oral administration of bLF and pepsin hydrolysate of bLF might be due to enhanced cellular immunity, presumably mediated by enhanced IL-18 production in the intestinal epithelium.
-
Nutrition and cancer · Jan 1999
Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice.
Topical nicotinamide (niacinamide) has demonstrable preventive activity against photocarcinogenesis in mice. To better understand how this vitamin prevents ultraviolet (UV) carcinogenesis, we tested systemic administration of another form of the vitamin, niacin, and its capacity to elevate cutaneous nicotinamide-adenine dinucleotide (NAD) content as well as to decrease photoimmunosuppression and photocarcinogenesis. BALB/cAnNTacfBR mice were fed the AIN-76A diet supplemented with 0%, 0.1%, 0.5%, or 1.0% niacin throughout the experiment. ⋯ Syngeneic, antigenic tumor challenges grew to an average of 91.6 +/- 19.7, 79.8 +/- 11.5, 41.9 +/- 11.7, or 13.2 +/- 4.1 mm2 in naive recipients of splenocytes from UV-irradiated mice treated with 0%, 0.1%, 0.5%, or 1.0% niacin supplementation, respectively, demonstrating niacin prevention of immunosuppression. Niacin supplementation elevated skin NAD content, which is known to modulate the function of DNA strand scission surveillance proteins p53 and poly(ADP-ribose) polymerase, two proteins critical in cellular responses to UV-induced DNA damage. These results clearly demonstrate a dose-dependent preventive effect of oral niacin on photocarcinogenesis and photoimmunosuppression and establish the capacity of oral niacin to elevate skin NAD levels.
-
Nutrition and cancer · Jan 1997
ReviewWhole-grain consumption and chronic disease: protective mechanisms.
Dietary guidance recommends consumption of whole grains to reduce the risk of chronic diseases including cancer and cardiovascular disease. Epidemiologic studies support the belief that whole grains are protective against cancers, especially gastrointestinal cancers such as gastric and colonic, and cardiovascular disease. ⋯ Other potential mechanistic effects of whole grains include binding of carcinogens and modulation of glycemic index. Clearly, the range of protective substances in whole grains is impressive, and advice to consume additional whole grains is justifiable.