Clinical science
-
Comparative Study
Association between inflammatory mediators and the fibrinolysis system in infectious pleural effusions.
The response of the fibrinolytic system to inflammatory mediators in empyema and complicated parapneumonic pleural effusions is still uncertain. We prospectively analysed 100 patients with pleural effusion: 25 with empyema or complicated parapneumonic effusion, 22 with tuberculous effusion, 28 with malignant effusion and 25 with transudate effusion. Inflammatory mediators, tumour necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8) and polymorphonuclear elastase, were measured in serum and pleural fluid. ⋯ PAI concentrations correlated with TNF-alpha, IL-8 and polymorphonuclear elastase when all exudative effusions were analysed, but the association was not maintained in empyema and complicated parapneumonic effusions. A negative association found between t-PA and both IL-8 and polymorphonuclear elastase in exudative effusions was strongest in empyema and complicated parapneumonic effusions. Blockage of fibrin clearance in empyema and complicated parapneumonic effusions was associated with both enhanced levels of PAIs and decreased levels of t-PA.
-
Comparative Study
Ketorolac attenuates cardiopulmonary derangements in sheep with combined burn and smoke inhalation injury.
Massive cutaneous burn combined with smoke inhalation causes high mortality in fire victims. Cyclo-oxygenase (COX) and inducible nitric oxide (NO) synthase (iNOS) have been shown to be up-regulated in burn injury. Ketorolac, a non-steroidal, anti-inflammatory agent (NSAID), inhibits prostaglandin and thromboxane synthesis through inhibition of COX. ⋯ Treatment with ketorolac prevented all of these morbidities. Post-treatment with ketorolac also resulted in significant inhibition of elevated plasma nitrite/nitrate levels in control animals. These results suggest that ketorolac may ameliorate cardiopulmonary morbidity, at least in part, by inhibiting excessive NO.
-
Interleukin-2 (IL-2), a cytokine that induces natural killer cells termed lymphokine-activated killer (LAK) cells, is in use as an anticancer agent. During IL-2 therapy, adverse effects, such as vasodilatation and hypotension, are common. Previous studies suggest that these effects are due to nitric oxide (NO). ⋯ The sham group showed no changes in any of the parameters. Scavenging NO by PHP prevented the hyperdynamic reaction induced by IL-2 administration in sheep. This activity of PHP may prevent the early discontinuation of IL-2 therapy that results because of these adverse events.