Clinical science
-
Transfer function techniques are increasingly used for non-invasive estimation of central aortic waveform characteristics. Non-invasive radial waveforms must be calibrated for this purpose. Most validation studies have used invasive pressures for calibration, with little data on the impact of non-invasive calibration on transfer-function-derived aortic waveform characteristics. ⋯ Whereas invasive calibration resulted in little error in transfer function estimation of central systolic pressure (difference -1+/-8 mmHg; P=not significant), non-invasive calibration resulted in significant underestimation (7+/-12 mmHg; P<0.001). Errors in estimated aortic parameters differed with non-invasively calibrated untransformed radial and transfer-function-derived aortic waveforms (all P<0.01), with smaller absolute errors with untransformed radial waveforms for most pressure parameters [systolic pressure, 5+/-16 and 7+/-12 mmHg; pulse pressure, 0+/-16 and 4+/-12 mmHg (radial and derived aortic respectively)]. When only non-invasive pressures are accessible, analysis of untransformed radial waveforms apparently produces smaller errors in the estimation of central aortic systolic pressure, and other waveform parameters, than using a generalized transfer function.
-
In the U. S. A., more than 1 million burn injuries occur every year. ⋯ In these fire victims, progressive pulmonary failure and cardiovascular dysfunction are important determinants of morbidity and mortality. The morbidity and mortality increases when burn injury is associated with smoke inhalation. In the present review, we will describe the pathophysiological aspects of acute lung injury induced by combined burn and smoke inhalation and examine various therapeutic approaches.