Clinical science
-
As this extraordinary year, blemished by COVID-19, comes to an end, I look back as Editor-in-Chief to the many great successes and new initiatives of Clinical Science. Despite the challenges we all faced during 2020, our journal has remained strong and vibrant. While we have all adapted to new working conditions, with life very different to what it was pre-COVID-19, the one thing that remains intact and secure is the communication of scientific discoveries through peer-reviewed journals. I am delighted to share with you some of the many achievements of our journal over the past year and to highlight some exciting new activities planned for 2021.
-
Angiotensin converting enzyme 2 (ACE2) is the major enzyme responsible for conversion of Ang II into Ang-(1-7). It also acts as the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2, which causes Coronavirus Disease (COVID)-19. In recognition of the importance of ACE2 and to celebrate 20 years since its discovery, the journal will publish a focused issue on the basic science and (patho)physiological role of this multifunctional protein.
-
Editorial Review
Anti-inflammatory actions of glucocorticoids: molecular mechanisms.
1. Glucocorticoids are widely used for the suppression of inflammation in chronic inflammatory diseases such as asthma, rheumatoid arthritis, inflammatory bowel disease and autoimmune diseases, all of which are associated with increased expression of inflammatory genes. The molecular mechanisms involved in this anti-inflammatory action of glucocorticoids is discussed, particularly in asthma, which accounts for the highest clinical use of these agents. 2. ⋯ This may be due to excessive formation of activator protein-1 at the inflammatory site, which consumes activated glucocorticoid receptors so that they are not available for suppressing inflammatory genes. 6. This new understanding of glucocorticoid mechanisms may lead to the development of novel steroids with less risk of side effects (which are due to the endocrine and metabolic actions of steroids). 'Dissociated' steroids which are more active in transrepression (interaction with transcription factors) than transactivation (GRE binding) have now been developed. Some of the transcription factors that are inhibited by glucocorticoid, such as nuclear factor-kappa B, are also targets for novel anti-inflammatory therapies.