Archives of dermatological research
-
Arch. Dermatol. Res. · May 1997
Epidermal growth factor and temperature regulate keratinocyte differentiation.
The limited life-span and irregularities in epidermal differentiation and barrier function that have restricted the utility of presently available skin culture models for pharmacological and toxicological studies indicate that further modifications of culture conditions are required for optimization of these models. In the present study epidermis reconstructed on de-epidermized dermis was used to investigate the effects of temperature and epidermal growth factor (EGF) on epidermal differentiation and lipogenesis. When cultured at 37 degrees C, keratinocytes formed a well-differentiated epidermis whether EGF was present or not. ⋯ The synthesis of the early specific protein differentiation markers (keratins 1 and 10) was suppressed on both the protein and mRNA levels without significant interference with the synthesis of late differentiation lipid markers, such as ceramides. From this observation it can be concluded that the synthesis of keratins associated with terminal differentiation is profoundly affected by the presence of EGF and is sensitive to temperature and that of ceramides is not. The finding that TGF alpha did not modulate the morphogenesis and synthesis of keratins 1 and 10 in cultures grown at 33 degrees C indicates possible differences between the postreceptor binding processes of these EGF receptor ligands.