Behavioural brain research
-
Many patients with chronic inflammatory disorders have an abnormal high prevalence of major depression accompanied by elevated levels of tumor necrosis factor-α (TNF-α). We hypothesize that systemic TNF-α increases brain monoamine metabolism, which might induce anhedonia (i.e. a core symptom of major depression). The effect of an intraperitoneal TNF-α injection on extracellular monoamine and metabolite concentrations was investigated by in vivo microdialysis in the nucleus accumbens (NAc) of C57BL/6 mice. ⋯ Remarkably, TNF-α also increased the dopamine metabolite HVA, without affecting dopamine levels itself. These data concur with earlier findings that pro-inflammatory cytokines enhance serotonin transporter activity, and possibly also dopamine transporter activity in the brain. However, more research is needed to understand the precise molecular mechanisms by which TNF-α increases transporter activity and anhedonia.
-
It is thought that a close dialogue between the primary motor (M1) and somatosensory (S1) cortices is necessary for skilled motor learning. The extent of the relative S1 contribution in producing skilled reaching movements, however, is still unclear. Here we used anodal transcranial direct current stimulation (tDCS), which is able to alter polarity-specific excitability in the S1, to facilitate skilled movement in intact behaving rats. ⋯ Bilateral BiAno1 stimulation was associated with greater qualitative functional improvement than unilateral UnAno stimulation. tDCS-induced improvements were not observed in the after-effects phase. Quantitative cytoarchitectonic analysis revealed that somatosensory tDCS bilaterally increases cortical neural density. The findings emphasize the central role of bilateral somatosensory feedback in skill acquisition through modulation of cortico-motor excitability.
-
Both epidemiologic and laboratory studies suggest that parents can shape their offspring's development. Recently, it has been shown that maternal exercise during pregnancy benefits the progeny's brain function. However, little is known regarding the influence of paternal exercise on their offspring's phenotype. ⋯ Immunohistochemistry staining, real time-PCR and western blot were performed to determine hippocampal BDNF and reelin expression of the male pups after behavior tasks. Our results showed that paternal treadmill exercise improved the spatial learning and memory capability of male pups, which was accompanied by significantly increased expression of BDNF and reelin, as compared to those of C group. Our results provide novel evidence that paternal treadmill exercise can enhance the brain functions of their F1 male offspring.
-
Disrupted white matter (WM) integrity is the pathological hallmark of schizophrenia. Previous studies have reported the cognitive deficits that are associated with WM disruption in schizophrenia with anti-psychiatric treatment. However, no study has yet revealed the correlation between cognition and WM abnormalities in never-medicated chronic schizophrenia. ⋯ Our results provide evidence to support that the disconnection of WM pathways may contribute to the pathophysiology of schizophrenia and suggest that the disturbance of left ILF and left IFOF integrity may contribute to cognitive deficits in schizophrenia, independent of effects of antipsychotic medication.
-
Environmental enrichment attenuates the response to psychostimulants and has been shown to reduce both anxiety and stress-related behaviors. Since stress is a major vulnerability factor for addiction, we investigated whether enrichment could reverse stress profiles in high anxious rats as well as reduce their amphetamine sensitivity. Using selectively-bred high and low anxiety males (filial 3) from enriched, social or isolated environments, we tested elevated plus maze exploration, novelty place preference and amphetamine (AMPH; 0.5mg/kg, IP)-induced hyperactivity. ⋯ There were no group differences or interactions found for novelty place preference. Enriched environments decreased the response to AMPH and stress-induced CORT regardless of trait but selectively decreased pTrkB and increased D2 mRNA levels in high anxiety animals. The results suggest that selectively-bred trait anxiety rats show state anxiety that is influenced by rearing environments, and D2 protein levels and BDNF/TrkB signaling may differentially contribute to integrating these effects.